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The vacuum expectation value of a Wegner-Wilson loop representing a fast moving quark-

antiquark pair defines the light-cone Hamiltonian for aqq̄ meson. We solve the corresponding

Schrödinger equation for various trial wave functions. Theresult shows how confinement deter-

mines the light-cone wave function for valence quarks in a rather model-independent way. The

correct chiral-symmetry behavior of the pion mass is obtained when the self-energy of the quark

is chosen properly.
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1. Introduction

One of the challenges in quantum chromodynamics (QCD) is to solve the relativistic bound
state problem. In the light-cone Hamiltonian approach [1] light-cone wave functions are boost in-
variant and have a well-defined probability interpretation- in contrast to the Bethe-Salpeter equa-
tion. It is necessary to have reliable light-cone wave functions, especially if one wants to calculate
exclusive reactions. Various approaches have been proposed to compute such wave functions. In
ref. [2], Simula uses the usual equal-time Hamiltonian and transforms the resulting wave functions
into the light-cone form with the help of kinematical on-shell equations. In ref. [3], Simonov and
collaborators derive a light-cone Hamiltonian in a model with certain string degrees of freedom.
More ambitious is the construction of an effective Hamiltonian including the QCD gauge degrees
of freedom explicitly and then solving the bound-state problem. For mesons, this approach [4, 5]
still needs many parameters which have to be fixed. Attempts have also been made to find the
valence-quark wave function for mesons with a simple Hamiltonian [6].

A necessary input for the calculation of a two-body Fock state is an adequate potential in
the light-cone Hamiltonian. For the equal-time Hamiltonian and heavy quarks the calculation of
Wegner-Wilson loops provides the form of the non-perturbative potential at large distances. Numer-
ical lattice simulations of QCD can give an accurate non-relativistic Hamiltonian. The continuum
stochastic vacuum model [7, 8] allows one to calculate vacuum expectation values of Wegner-
Wilson loops using perturbative and non-perturbative field-strength correlation functions as input.
One can compute the loop expectation value〈W[C]〉 in terms of a gauge-invariant bilocal gluon
field-strength correlator integrated over the minimal surface by using the non-Abelian Stokes’ the-
orem and the matrix cumulant expansion in the Gaussian approximation. The gluon field-strength
correlator has perturbative and non-perturbative components. The stochastic vacuum model is used
for the non-perturbative low-frequency background field, and the perturbative gluon exchange is
used for the additional high-frequency contributions. Thecalculation of the expectation value of a
Wegner-Wilson loop along the imaginary-time direction gives the heavy quark-antiquark potential
with color-Coulomb behavior for small and confining linear rise for large sources’ separations [9].

Since the computation of the VEV for the Wegner-Wilson loop can be done completely ana-
lytically, also other orientations of the loop can be chosen, e.g. a loop where the quark-antiquark
pair moves along the z-direction. By transforming to Minkowski space-time, the dependence of
the interaction potential on longitudinal and transverse separations of the pair can be obtained this
way. Approaching light-like trajectories of the quark-antiquark pair, we have deduced in ref. [10]
a light-cone Hamiltonian, which contains confinement from first principles.

This article gives a brief survey of our paper ref. [11], in which we would like to complete
the Hamiltonian of ref. [10] by including quark self-energyeffects, quark wave-function renor-
malization and spin-spin interactions phenomenologically and evaluate the eigenvalues of the full
Hamiltonian for light and heavy mesons variationally.

2. The light-cone Hamiltonian

The light-cone Hamiltonian derived in ref. [10] for light valence quarks of massµ has a sim-
ple confining potential, the magnitude of which is set by the string tensionσ = 0.18GeV2. In the
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notations of reference [12], we introduce as dynamical variables the light-cone momentum fraction
ξ = k+/P+ with |ξ |< 1/2 and its conjugate variable, namely the scaled longitudinal space coordi-
nate

√
2ρ = P+x−. The effective “distance“ between the quarks is given by thescale-free light-cone

longitudinal distancêρ and the transverse distancex⊥ multiplied by the bound-state mass. Note
that the transverse confinement scale is related to the self-consistent mass of the bound stateM2.
The so-obtained light-cone HamiltonianHLC = 2P+P− is Lorentz invariant under boosts, because
the variablesξ ,ρ ,k⊥, andx⊥ are boost invariant. The transverse momentum and the longitudinal
space coordinate are represented by the operators

k̂⊥ =
1
i
~∇⊥ (2.1)

and

ρ̂ =
1
i

d
dξ

, (2.2)

so that the Hamiltonian reads (h̄ = 1):

Hqq̄
LC(µ2) = M2 =

(µ2 + k̂2
⊥)

1/4−ξ 2 +2σ
√

ρ̂2 +M2x2
⊥. (2.3)

The other, non-confining, potential has been worked out similarly, and is treated in ref. [11] in
more details.

The best way to find the two-body wave function is to use as variables the light-cone mo-
mentum fractionξ and the transverse quark-antiquark separationx⊥. It is expected, that with the
Hamiltonian of eq. (2.3), the meson masses, and especially the pion mass, are not described cor-
rectly. Additional terms are needed for a realistic valence-quark Hamiltonian. Indeed, it is a matter
of a simple variational calculation to find out that the eigenvalues of the light-cone Hamiltonian in
the form (2.3) are of the order ofM = 1.6 GeV for µ2 = 0. This is obviously too high compared
with good valenceqq̄-mesons like the vector mesons, which have an energy of 800 MeV for light
quarks. First, the spin structure of the meson is not properly taken care of in the spin-independent
expression above. Secondly, one expects quark self-energycorrections, which are especially im-
portant for small current quark masses.

In the literature, the quark self-energy has been deduced from the stochastic vacuum model in
two calculations [13,14]. In the first version [13]

∆1
(

µ2) = −4σ
π

(2.4)

has been derived from the confining gluon field configurationsinteracting with the q-field. In
the second version [14], Simonov takes into account the confinedqq̄ state with massM and finds:

∆2
(

µ2) = −4σ
π

φ(t) (2.5)

with
φ(t) = t

∫ ∞

0
dzz2K1(tz)e

−z, (2.6)

where
t = (µ +M/2)a. (2.7)
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Here µ is the current quark mass,M is the uncorrected meson mass,a = 0.302 fm is the
correlation length of the field-strength correlator. The dependence of the self-energy correction
∆2

(

µ2
)

on the meson mass is shown in Fig. 1.
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Figure 1: Self-energy correction∆2
(

µ2
)

for vanishing current quark massµ = 0 as a function of the
uncorrected meson massM.

This self-energy correction∆2
(

µ2
)

of eq. (2.5) agrees with the constant self-energy correction
of eq. (2.4)∆1

(

µ2
)

= −0.23GeV2 for M = 0. The self-energy correction is negative for light
flavors, and vanishes for heavy quarks, i.e. for heavy-mesonmassesM. Such a functional behavior
looks rather reasonable. Elimination of higherqq̄-gluon states produces an attractive interaction.

3. Variational solution of the light-cone Hamiltonian

We evaluate the Hamiltonian for zero current quark massesµ2 = 0, but with quark self-energy
correction∆1

(

µ2
)

:

< Ψ|ĤLC(∆1µ2)|Ψ >= M2. (3.1)

We compute the vacuum expectation value of the Hamiltonian eq. (2.3), using a variational method.
Simple trial wave functions factorize in a longitudinal wave functionφ(ξ ) and a transverse wave
function ϕ(x⊥). We take the following two trial wave functions(i = 1,2), where the first one has
the conventional form ofξ -dependence:

Ψi(ξ ,~x⊥) = φi(ξ ) ·ϕ(x⊥) for i = 1, 2 (3.2)

ϕ(x⊥) =
1√
πx0

·exp
[

− ~x2
⊥

2x2
0

]

(3.3)

with φ1(ξ ) =
√

6 ·
(

1
4
−ξ 2

)1/2

(3.4)
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andφ2(ξ ) =

√

8
π
·
(

1
4
−ξ 2

)1/4

, (3.5)

x0 being the mean transverse extension of the meson.
The wave functions vanish at the kinematical boundaries(ξ = ±1

2) which correspond to the
limits of relative infinite longitudinal momenta in the non-relativistic description:

Ψi

(

ξ = −1
2
,x⊥

)

= Ψi

(

ξ =
1
2
,x⊥

)

= 0. (3.6)

In both cases, we get self-consistent transcendental equations for M, which can be solved
numerically. In Fig. 2, we plot the resultingM as a function of the transverse-extension parameter
x0 of the trial wave functionsΨi . The trial wave functionΨ1 leads to a smaller value of the
meson mass, which lies in the expected range of light vector-meson masses. The higher mass
corresponding to the trial wave functionΨ2 comes about from the higher longitudinal momenta in

this wave function. The rms-extensions
√

< x2
⊥ > = x0,i of the mesons can be read off from the

minima of both curves. We obtain

x0,1 = 0.8fm andx0,2 = 0.86fm. (3.7)

The corresponding mass values are

M1 = 0.85GeV andM2 = 0.89GeV. (3.8)

x0[1/GeV]

M[GeV]
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Figure 2: M(x0) for the trial wave functionsΨ1 (full line) andΨ2 (dashed line). The Hamiltonian includes
the self-energy correction∆1

(

µ2
)

.
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4. Chiral symmetry breaking

Chiral symmetry breaking has been a challenging aspect of the light-cone theory. It is known
in equal-time theories that the vacuum is very complicated and higher Fock components of the
quark-antiquark wave function are needed in order to reproduce the low-energy properties of the
pion correctly. An interaction of the Nambu–Jona-Lasinio (NJL) type leads to a quark condensate,
the excitations of which are massless Goldstone pions. In the light-cone approach, the most de-
veloped calculation uses the NJL-model with a vector interaction [15] and obtains very interesting
differences of the light-cone wave function between the vector mesons and pions. In our frame-
work, the complicated self-energy correction∆2

(

µ2
)

of the constituent quark can give the correct
chiral-symmetry behavior of the pion mass. We apply the Feynman–Hellmann theorem [16,17] to
the light-cone Hamiltonian, which has dimension[mass]2,

∂M2
π

∂ µ
=

〈

∂HLC

∂ µ

〉

(4.1)

and investigate what happens to the pion-mass squaredM2
π = 0, when the current quark mass

µ increases to finite valuesµ 6= 0. Especially one may ask whether the Gell-Mann–Oakes–Renner
relation still holds. How can the pion mass squared vanish linearly with the quark mass? A naive
kinetic term cannot do that because then∆M2 ∝ µ2. In the Hamiltonian (2.3) with∆2

(

µ2
)

we
have, however,

∂M2

∂ µ

∣

∣

∣

µ=0
=

−4σ
π

〈

1
1/4−ξ 2

〉

∂φ(t)
∂ µ

∣

∣

∣

t=M0/2a

1−σ
〈

x2
⊥√

ρ2+M2x2
⊥

〉 . (4.2)

The functionφ(t) is defined via∆2
(

µ2
)

by means of eq. (2.5). ForM0 we take the averaged
meson mass ofM0 = 0.67GeV, and for the transverse extension we takex0 = 0.8fm of eq. (3.7).
We get a linear dependence of the pion mass squared on the quark mass, which has a slope

∂M2
π

∂ µ

∣

∣

∣

µ=0
≈ 3.38 GeV. (4.3)

We compare this value with the Gell-Mann–Oakes–Renner relation [18,19]

M2
π = (−2µ)

< 0|q̄q|0 >

F2
π

, (4.4)

which amounts to a theoretical value for the same slope:

−2 < 0|q̄q|0 >

F2
π

≈ 3.20 GeV, (4.5)

where the absolute value of the quark condensate is(0.240 GeV)3 andFπ = 0.093 GeV [20].
The relative difference between our light-cone calculation of eq. (4.3) and the empirical value∂M2

∂ µ
of eq. (4.5) is only 6%. This is a very good result, but as one can see from eq. (4.2) it depends
on the self-energy correction∆

(

µ2
2

)

. Besides the quantitative success, this result stimulatesfurther
studies of the self-energy correction in the light-cone theory. Here the new possibilities opening up
by the AdS/QCD approach [21,22] can play an important role.
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