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I review recent results regarding the nucleon charge and magnetization densities as well as the
shape of the nucleon. First, some phenomenolgical considerations that show that the shape of
the proton is not round are discussed. Then model independent results regarding the neutron and
proton charge density, and the proton magnetization density are presented. Finally, I show how the
spin-dependent densities that reveal the shape of the proton can be measured via their relation with
transverse momentum distributions. The present work is made possible by the recent tremendous
experimental progress made at Bates, Mainz and Jefferson Laboratory.
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1. Phenomenology

The electromagnetic form factors are matrix elements of the current operator, J µ(x), between
nucleon states of different momentum:

〈p′,λ ′|Jµ(0)|p,λ 〉 = ū(p′,λ ′)

(
γ µF1(Q

2)+ i
σ µα

2M
qα F2(Q

2)

)
u(p,λ ), (1.1)

where qα = p′α − pα , Q2 ≡−q2 > 0, M is the nucleon mass and the light-cone helicities are λ ,λ ′.
The Sachs form factors are: GE(Q2) ≡ F1(Q2)− Q2

4M2 F2(Q2),GM(Q2) ≡ F1(Q2) + F2(Q2). The
early expectation, based on a simple application of helicity conservation at very high values of the
momentum transfer, was that the QF2(Q2)/2MF1 ∼ mquark

Q → GE (Q2)
GM(Q2)

= const, which is also obtained
from non-relativistic considerations. Thus the expectation was that, at sufficiently large momentum
transfer, GE/GM would be flat and the QF2/F1 would fall. However, the reverse was true [1].

It is necessary to comment on the meaning of these form factors. In the Breit frame, with
p = −p′, GE is the nucleon helicity flip matrix element of J0. However, any probability or density
interpretation of GE is spoiled by a non-zero value of Q2, no matter how small. The initial and final
states have different momentum, and therefore relativistically have different wave functions. Any
attempt to analytically correct for the total momentum by incorporating relativistic corrections in a
p2/m2

q type of expansion is doomed by the presence of the very light current quark mass, mq. That
is, at small values of Q2, one finds

Gn
E ∼ Q2(

∫
d3r

(
r2|ψ |2 +

C
m2

q

)
, (1.2)

where the first term represents the expected effect depending on the square of the wave function
and the term C represents the unknown boost correction.

So to analyze form factors using a model, the model must be relativistic. We chose [2] to
use a relativistic model using light front coordinates. These useful coordinates involve the use
of a “time” x+ = (ct + z)/

√
2 = (x0 + x3)/

√
2. The corresponding evolution operator is the not

the Hamiltonian, p0, but instead p− = (p0 − p3)/
√

2. The orthogonal spatial coordinate is x− =

(x0 − x3)/
√

2. If one quantizes at x+ = 0, then x− =
√

2z, and this is why x− is thought of as
the spatial variable. The canonically conjugate momentum is given by p+ = (p0 + p3)/

√
2. We

note that pµ xµ = p−x+ + p+x− −p · b. The transverse coordinates perpendicular to the 0 and 3
directions are denoted as b and p. Using these variables allows the separation of center of mass and
relative position variables in a manner similar to that of the usual non-relativistic treatment. The
key feature is that transverse boosts act like the non-relatistic boosts.

We used these variables to formulate a Poincare invariant, relativistic constituent quark model
in 1995 and predict the qualitative behavior of form factors measured five years later. Please see
Figs. 10, 11 of Ref. [2]. More detailed analysis [3]showed that the flat nature of QF2

F1
results from

orbital angular momentum of the quarks inherent in the lower component of quark Dirac spinors.
So we had a reasonable model, which includes quark orbital angular momentum. I was faced

with the challenge of relating orbital angular momentum to a potential non-spherical shape of the
proton. The notion that the proton might not be a sphere has its impetus in the discovery that the
spins of quarks and anti-quarks account for only about 30% of the total angular momentum. It
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seems natural to associate non-zero orbital angular momentum with a non-spherical shape, but the
Wigner-Eckart theorem says that the proton has no quadrupole moment. In response, I introduced
spin-dependent densities SDD, and later learned these are common in condensed matter physics.
Spin-dependent density operators We interpret orbital angular momentum in terms of the shapes
of the proton exhibited through the rest-frame ground-state matrix elements of spin-dependent
density operators [4]. The density operator is ρ̂(r) = ∑i δ (r− ri), where ri is the position operator
of the i’th particle. For particles of spin 1/2 one can measure the combined probability that a particle
is at a given position r and has a spin in an arbitrary, fixed direction specified by a unit vector n.

The coordinate-space spin-dependent density SDD operator is ρ̂(r,n) = ∑i δ (r− ri)
1
2(1+σ i ·n).

To understand the connection between the spin-dependent density and orbital angular mo-
mentum, consider a first example of a single charged particle moving in a fixed, rotationally-
invariant potential in an energy eigenstate |Ψ1,1/2,s〉 of quantum numbers: l = 1, j = 1/2, po-
larized in the direction ŝ and radial wave function R(rp). The wave function can be written as
(rp|Ψ1,1/2,s〉 = R(rp)σ · r̂p|s〉. The ordinary density ρ(r) = 〈Ψ1,1/2,s|δ (r− rp)|Ψ1,1/2,s〉 = R2(r), a
spherically symmetric result because the effects of the Pauli spin operator square to unity. But the
matrix element of the SDD is more interesting:

ρ(r,n) =
R2(r)

2
〈ŝ|σ · r̂(1+σ · n̂)σ · r̂|ŝ〉. (1.3)

The magnetic quantum defines an axis, s and the direction of vectors can be represented in terms
of this axis: ŝ · r̂ = cos θ . Suppose n̂ is either parallel or anti-parallel to the direction of the proton
angular momentum vector ŝ. Then ρ(r,n = ŝ) = R2(r)cos2 θ , ρ(r,n =−ŝ) = R2(r) sin2 θ , and the
non-spherical shape is exhibited. The average of these two cases is a spherical shape.

We computed momentum-space SDDs [4] using our model[2] model and obtained a variety of
unusual shapes. See Figs. 2,3 of [4]. A possible shape of the proton is shown here in Fig. 1.

The logic is that using a model wave function, in rough agreement with data for form factors,
leads to a non-spherical shape of the SDD. However, there was no direct connection between
experiment and the shapes. We shall return to issue after discussing other model independent
results for charge and magnetization densities.

2. Model independent neutron charge density

The neutron has no net charge, but the charge density need not vanish. So we can ask, “Is the
central charge density negative or positive?”. Long-standing existing answers are based on models
For example,. the neutron can make a spontaneous quantum transition to a pπ− state [5]. The light
pion spreads out over a larger region of space than the proton to cause a negative charge density
at the edge of the neutron and positive one at the center. A similar result is obtained with the
different one-gluon exchange force, acting repulsively between two negatively charged d-quarks.
But enough about models!

The starting point for a model independent analysis is the use of transversely localized nucleon
states [6, 7, 8]:

∣∣p+,R = 0,λ
〉
≡ N

∫
d2p

(2π)2
∣∣p+,p,λ

〉
. (2.1)
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Figure 1: Possible shape of the proton. The angular momentum of the proton is up, as is the spin of the
struck quark. The probability for a quark to have a momentum direction at a given angle is proportional to
the distance from the center. In this case, a high momentum quark of spin up is twice as likely to have its
momentum parallel to its spin as it is to have be perpendicular.

where |p+,p,λ 〉 are light-cone helicity eigenstates and N is a normalization factor. The range of
integration in Eq. (2.1) must be restricted to |p| � p+ to maintain the interpretation of a nucleon
moving with well-defined longitudinal momentum[7]. Thus we use the infinite momentum frame.

Using Eq. (2.1) sets the transverse center of momentum of a state of total very large momentum
p+ to zero, so that transverse distance b relative to R. can be defined. Thus one defines a useful
combination of quark-field operators [7]:

Ôq(x,b) ≡
∫

dx−

4π
q†

+

(
−x−

2 ,b
)

q+

(
x−

2 ,b
)

eixp+x− , (2.2)

where the subscript + denotes the use of independent quark field operators. The impact parameter
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dependent PDF is defined [7] as:

q(x,b) ≡
〈

p+,R = 0,λ
∣∣ Ôq(x,b)

∣∣p+,R = 0,λ
〉
. (2.3)

This is the basic density that can be obtained, giving the probablitiy of finding a quark at a trans-
verse position that carries a fraction x of the the protons plus component of momentum. The use of
Eq. (2.1) in Eq. (2.3) allows one to show [9] that q(x,b) is the two-dimensional Fourier transform
of the GPD Hq:

q(x,b) =

∫
d2q

(2π)2 ei q·bHq(ξ = 0,x, t = −q2), (2.4)

.
One obtains a relation between q(x,b) and the form factor [6] by integrating q(x,b) over all

values of x. This sets the value of x− to 0, so that a density appears in the matrix element. If one
also multiplies by the quark charge eq (in units of e), sums over quark flavors, and uses the sum
rule relating the GPD to the form factor, the resulting infinite-momentum-frame IMF parton charge
density in transverse space is

ρ(b) ≡ ∑
q

eq

∫
dx q(x,b) =

∫
d2q

(2π)2 F1(Q
2 = q2)ei q·b. (2.5)

We exploit Eq. (2.5) by using using recent parameterizations [10, 11] of measured form factors
to determine ρ(b). The charge densities of the proton and neutron are shown in Fig. 1 of [9]. The
surprising feature is the negative central value of the neutron charge density. This results from the
negative definite nature of F1 [9]. The neutron charge density has interesting features, as shown in
Fig. 2 of [9] which displays the quantity bρ(b). It is the integral of this quantity that integrates to
0. The neutron charge density is negative at the center, positive in the middle, and again negative
at the outer edge. The medium-ranged positive charge density is sandwiched by inner and outer
regions of negative charge. This interesting behavior needs to be better understood.

One gains information about individual u and d quark densities by invoking charge symmetry
[12] so that u,d densities in the proton are the same as d,u densities in the neutron. The results, [9]
are that the central up quark density is larger than that of the down quark by about 30%.

Proton Magnetization Density We recently showed [13], that the two-dimensional Fourier trans-
form of the Pauli form factor F2 plays the role of the magnetization density.

3. Measuring the Non-Spherical Shape of the Nucleon

While the matrix elements of the spin-density operator reveal highly non-spherical densities,
experimentally determining the proton’s non-spherical nature has remained a challenge. Here we
explain how matrix elements of the spin-dependent density may be measured using their close
connection with transverse momentum dependent parton densities [14].

The field-theoretic version of the spin-dependent charge density operator is a generalization of
the operator defined in Ref. [4]:

ρ̂REL(K,n) =

∫
d3ξ

(2π)3 e−iK·ξ ψ̄(0)γ0(1+ γ ·nγ5)L (0,ξ ; path)ψ(ξ )
∣∣
t=ξ 0=0 , (3.1)
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where ψ is a quark field operator and flavor indices are omitted. The quark field operators are eval-
uated at equal time and accompanied by a path-ordered exponential link operator L ((0,ξ ; path)

needed for color-gauge invariance. This matrix element gives the probability of finding a quark of
three momentum K and spin direction n. It depends on the direction of three vectors K,n and the
direction of the spin polarization. Compared with the orginally introduced SDD, there is an extra
γ0 in front of the term that depends on n.

Measuring the spin-dependent density requires that the system be probed with identical initial
and final states. But this condition also enters in measurements of both ordinary and transverse-
momentum-dependent TMD parton distributions. The latter [15] are:

Φ[Γ](x,K) =
∫

dξ−d2ξT

2(2π)3 eiK·ξ 〈P,S|ψ(0)ΓL (0,ξ ;n−)ψ(ξ )|P,S〉
∣∣∣∣
ξ+=0

, (3.2)

where the specific path n− is that of their Appendix B. The functions Φ[Γ] depend on the fractional
momentum x = K+/P+, the trasnverse momentum K, and the proton spin direction. The operator
Γ can be any Dirac operator. In particular, the shape of the proton is revealed [14] through

Φ[iσ i+γ5](x,K) = Si
T h1(x,K

2)+
KiK j − 1

2 δi j

M2 h⊥1T (x,K2). (3.3)

It is therefore tempting to try to associate an SDD such as that of Eq. (3.1) with TMDs, but one
difference is essential. Parton density operators Eq. (3.2) depend on quark-field operators defined
at a fixed light cone time ξ + = ξ 3 + ξ 0 = 0 while our SDD is an equal-time, ξ 0 = 0, correlation
function. However, a relation between the two sets of operators is obtained [14] by integrating the
TMD over all values of x setting ξ − to zero, and integrating Eq. (3.1) over all values of Kz so that
ξ 3 = 0. After integration, ξ± = 0 for both functions. Computed models for the transverse spin
dependent densities are shown in Figs. 1,2 of [14].

The term h⊥1T causes distinctive experimental signatures in semi-inclusive leptoproduction
hadron production experiments see the list of references in [14]. In each of these cases, the mo-
mentum of the virtual photon and its vector nature provide the analogue of the vector n needed to
define the spin-dependent density. The hadronic transverse momentum provides the third, KT .

Of special interest is the reaction ep ↑→ e′πX Here the term h⊥1T causes a distinctive oscillatory
dependence on the angle 3φ −φS1 , [16] where φ is the angle between the momentum of the outgoing
lepton and the reaction plane in the lepton center of mass frame, and φS1 denotes the direction of
polarization with respect to the reaction plane.

It is very exciting that experiments planned at Jefferson Laboratory aim to specifically mea-
sure h⊥1T [17] and therefore determine whether or not the proton is round. We also note that the
non-spherical shape of the nucleon has been established in lattice QCD by computing appropriate
moments of impact parameter dependent gpds. See the talk of Zanotti in this workshop.

Our summary of SDDs is that these are closely related to TMDs. If h⊥
1T is not 0, the proton is

not round. Experiment can show that the proton is not round.
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