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Rapidity divergences occur when parton densities in a gauge theory are defined in the most natural
way, as expectation values of partonic number operators in light-front quantization. I review these
and other related divergences, and show how the definitions of parton densities can be modified
to remove the divergences. A modified definition is not only essential for many phenomenolog-
ical applications of QCD, but also concerns the treatment of parton densities in non-perturbative
approaches. The necessity of modifications in the definition of a parton density also entails cor-
rections in the formulation of light-front quantization for gauge theories.
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Rapidity divergences and valid definitions of parton densities John COLLINS

1. Introduction

Parton densities are central to much phenomenology of scattering in QCD. Hard-scattering
factorization theorems represent cross sections as convolutions of perturbatively calculable factors
and of parton densities (and related quantities like fragmentation functions). Predictions are made
on the basis of perturbative calculations because of the universality of parton densities between
different reactions.

Natural candidate definitions of parton densities are obtained from elementary treatments of
the parton model, and they can be formulated as expectation values of number operators in light-
front quantization. Unfortunately, when applied in a gauge theory like QCD, these definitions
suffer from divergences where the rapidities of some gluons goes to infinity.

This talk reviews how rapidity divergences and certain other divergences arise. It summarizes
their impact on correct definitions of parton densities, on phenomenology, and on fundamental
issues in light-front quantization. Naturally, a valid derivation of a factorization property requires a
valid definition of parton densities that is matched to the factorization property. Moreover, to allow
non-perturbative methods in QCD to be used to estimate parton densities, operator definitions of
parton densities are needed that can be taken literally.

2. Parton densities from parton model

In view of the many complications in full QCD, we first recall how parton densities arise in
the parton model. This leads to a natural definition of a parton density, thereby giving a convenient
conceptual landmark. The results in QCD can be regarded, not as overthrowing the parton model
but as modifying and distorting it, while preserving much of an overall intuitive framework.

We consider DIS, ep → eX , and use light-front coordinates: k± = (k0 ± kz)/
√

2. We work in
the Breit frame, where the momenta of the target and the virtual photon are pµ =

(

p+, M2/(2p+), 0T
)

and qµ =
(

−xp+, Q2/(2xp+), 0T
)

. In the parton model, valid in certain model field theories, we
assume that, to leading power in mass/Q, there is dominance by handbag diagrams
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with the virtualities and transverse momentum of the quark lines being limited.
This leads to well-known scaling formulae for structure functions, such as F2 = ∑ j e2

jx f j(x).
Here f j is the density of a quark of flavor j defined graphically by

f j(x)
parton model

= Tr γ+

2
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with k+ = xp+, which relates the momentum of the internal quark to the experimentally measurable
quantity x. The corresponding operator formula is

f j(x)
parton model

=
∫ dw−

2π
e−ixP+w− 〈P|ψ j(0,w−,0T )

γ+

2 ψ j(0) |P〉
c
, (2.3)
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where ψ j(w+,w−,wT ) is the quark field, and the subscript “c” denotes that only connected graphs
are to be included. The two fields in Eq. (2.3) have a light-like separation, because of the integral
over all k− and kT in Eq. (2.2).

Some other processes, e.g., semi-inclusive DIS, are sensitive to parton transverse momentum.
For these, we use an unintegrated parton density defined by removing the integral over kT , to give

f j(x,kT )
parton model

=
∫ dw− d2wT

(2π)3 e−ixP+w−+ikT ·wT 〈P|ψ j(0,w−,wT )
γ+

2 ψ j(0) |P〉
c
. (2.4)

An interpretation is made by using light-front quantization. Expanding the fields in annihila-
tion and creation operators gives

f j(x,kT )
parton model

= ∑
λ

〈p| b†
k,λ , jbk,λ , j |p〉−vacuum expectation value

〈p|p〉 × 1
2x(2π)3 , (2.5)

where bk,λ , j is the annihilation operator for a quark of flavor j, helicity λ , plus-momentum xp+ and
transverse momentum kT . To the extent that the parton model is exactly correct, a parton density
is therefore the number density of partons of the given momentum and flavor.

3. Wilson lines in parton densities

3.1 Light-cone gauge

To apply light-front quantization in a gauge theory, it is natural to use the light-cone gauge
A+ = 0. For partons collinear to the target, this gauge leads to a treatment that is the same as
in the parton model. So it is very natural to try to continue to use Eq. (2.4), or equivalently (2.5).
However, such a definition gives problems from kinematic regions other than the collinear-to-target
region.

We formulate the gauge condition covariantly as n ·A = 0, where nµ = δ µ
− . Then the gluon

propagator has a singularity at k ·n = 0:

i
k2

(

−gµν +
kµnν +nµkν

k ·n

)

. (3.1)

Now, in proving factorization, certain contour deformations are applied to avoid a rescattering
region. Some relevant graphs are illustrated in Fig. 1(a). The contour deformation is away from
k ·n ' 0, and is obstructed by the gauge singularity in the light-cone-gauge propagator Eq. (3.1).

To avoid this problem, we use Feynman gauge. But the price is that we have extra regions to
consider, notably where the gluons in Fig. 1(a) are collinear to the target, a situation that is power
suppressed in light-cone gauge.

3.2 Wilson lines in integrated parton densities

The first part of the solution is to make the definition of the parton densities gauge-invariant,
by inserting a Wilson-line operator between the quark and anti-quark fields. A Wilson line is a
path-ordered exponential of the gluon field taken along some path joining the two fields. The
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Figure 1: (a) Final-state gluon exchanges added to a handbag diagram are of leading power. (b) One-gluon
exchange, with momentum labeling. (c) Parton density with Wilson line.

key question is which is the appropriate path if we are to obtain a parton density that allows the
derivation of a valid factorization property for the cross section.

In the case of an integrated density, (2.3), the fields are separated along exactly the minus
direction. Taking the Wilson line along the path joining the two fields is appropriate [1], so that we
insert into the matrix element a factor

W (w−,0) = P exp
(

−ig0

∫ w−

0
dy− A+

(0)α(0,y−,0T )tα
)

, (3.2)

which is equal to unity in A+ = 0 gauge. Graphs like Fig. 1(a) with gluon exchanges between the
final-state quark and everything else, lead to graphs like Fig. 1(c) for the parton density, with the
double line indicating the Feynman rules for the Wilson line: The definition matches the proof.

Supplemented by renormalization of the UV divergences in the parton density, this definition
is satisfactory for integrated parton densities, as far as is known. These are the standard parton
densities that are used in much phenomenology.

3.3 Meaning of Wilson line

The Wilson line arises from an approximation to the momentum that flows from a gluon onto
a final-state quark. For example, for exchange of one gluon of momentum l, Fig. 1(b), we have

1
(q+ k− l)2 −m2 + iε ' 1

−2(q+ k) · l + iε ' 1
−2q−l+ + iε . (3.3)

The approximation is valid for a gluon collinear to the target, and the previously mentioned contour
deformation is needed to avoid the region where l+ gets small with lT fixed.

We interpret this formula by regarding the outgoing quark as having a diffraction pattern aris-
ing from quark emission from different points in the target, Fig. 2. The quark is highly time-dilated
in the rest frame of the target, and is therefore almost undeflected while it remains inside the target.
The Wilson line essentially gives the quantum-mechanical phase acquired by the quark as it climbs
out of gluon field of the target. The Sivers function, a transverse-spin-dependent unintegrated par-
ton density that we will hear about elsewhere in this workshop, occurs because in a spinning proton,
the gluon field rotates and gives different phases on opposite sides of the proton, just as for optical
diffraction from a rotating transparent ring.
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+

Figure 2: A quark is knocked out of proton by a virtual photon, and acquires acquires a phase accumulated
along its path.

4. Unintegrated pdf and rapidity divergences

For an unintegrated density (2.4), the parton fields are no longer at a light-like separation, but
the derivation of factorization still requires us to use manipulations like those in Eq. (3.3). Thus
the Wilson line does not go along the line joining the quark and anti-quark; instead, it goes out to
infinity from one field in an approximately light-like direction, makes a transverse jog, and then
comes back to the other field. Thus the interpretation still applies that the Wilson line gives the
phase acquired by a fast-moving quark going through the gluon field of the target. That the Wilson
line goes to future infinity, not to past infinity, is determined by the sign of the iε in (3.3).

With exactly light-like Wilson line, there are divergences at l+gluon = 0. For example, for a
graph with one exchanged real or virtual gluon, we have

k

l

P

r = k + l

Φ

∝
∫

dr− d2lT
∫

0

dl+
l+

Φ(k+ + l+,r−,kT + lT )

l2
T +m2

g + · · · (4.1a)

l

k − l

P

r = k

Φ

∝ −
∫

dr− d2lT
∫

0

dl+
l+

Φ(k+,r−,kT )

l2
T +m2

g + · · · , (4.1b)

where the dots “. . .” indicate terms that vanish at l+ = 0 and that therefore do not contribute to the
divergence. The two graphs differ only by placement of the final-state cut. If we were to integrate
over all external transverse momenta kT , to get a contribution to the integrated quark density, the
divergence would cancel. But in the unintegrated density, the divergence is uncanceled, and does
not cancel against other graphs. The same divergence occurs in light-front wave functions — see,
for example, Eq. (29) of [2].

We included a non-zero gluon mass in Eq. (4.1), to demonstrate clearly that the divergence is
not an infra-red divergence, even though one component of gluon momentum goes to zero. Equally
it cannot be regulated by changing the dimension of space-time.

The divergence, in fact, arises from an integral over gluon rapidity, defined by

y ≡ 1
2 ln l+

l− = ln l+
√

(l2 + l2
T )/2

. (4.2)
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Figure 3: Rapidity ranges: (a) for parton density with light-like Wilson line; (b) for original integral; (c) for
parton density with Wilson line of rapidity yn.

Changing variable from l+ to y at fixed lT gives an approximately uniform integrand as a function
of y, between kinematic limits. The upper limit is the proton rapidity, but — Fig. 3(a) — the lower
limit, given by the Wilson line, is −∞.

This misrepresents the actual physics, Fig. 3(b). Only the target-collinear range, approximately
between the target and the virtual photon, belongs in the parton density. Much lower rapidities
belong with the jet, while a central range should be associated with a soft factor. Naturally in a
factorization theorem, it is necessary to compensate double counting of the overlap regions.

4.1 Modified parton density with cut off on rapidity

We are therefore required to modify the definition of the parton density to provide some kind
of cut off on gluon rapidity.

One obvious solution is to make the direction n of the Wilson line non-light-like. This is
essentially the solution of Collins and Soper [1, 3], except that they used a non-light-like axial
gauge n ·A = 0. As we have already mentioned, such gauges cause problems in properly deriving
factorization, so the Wilson line solution is preferred. The definition of a parton density now has
the Wilson line going to +∞ in direction n, making a jog at infinity, and coming back:

f j(x,kT ;yn) =
∫ dw− d2wT

(2π)3 e−ixP+w−+ikT ·wT

〈p,s| ψ(0,w−,wT )W (w to ∞;n)† γ+

2 W (at ∞) W (0 to ∞;n)ψ(0) |p,s〉 . (4.3)

Other variations on the same idea are possible, e.g., [4], but there must always be present an extra
parameter yn that limits the gluon rapidity: Fig. 3(c).

Collins, Soper and Sterman (CSS) [1, 3, 5] restored the predictive power of the theory by
an equation for the yn dependence. The kernel of the equation involves a perturbatively cal-
culable function G, a universal non-perturbative function K(qT ), and a perturbatively calculable
renormalization-group function γK(αs) for K and G.

The CSS formalism not only determines a resummation of the large logarithms of Q/qT that
arise in collinear factorization, but systematically treats the effects of the non-perturbative region
of small transverse momentum for the partons.

4.2 Implications

An immediate consequence of the CSS method is the energy dependence of the transverse-
momentum distribution of the Drell-Yan cross section. Fits to the non-perturbative parts of the
factorization formula are made, in principle from a subset of the data, and predictions then made

6
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Figure 4: Wilson line in unintegrated parton density, viewed from side. The limit L → ∞ should be taken.

for all energies, e.g., [6]. Extending the formalism to the gluon density allows the transverse
momentum of the Higgs boson to be predicted, e.g., [7]. Similar methods apply to transverse mo-
mentum distributions in other processes, like semi-inclusive DIS, and almost-back-to-back hadron
production in e+e− annihilation.

Close examination of the arguments for the direction of the Wilson lines shows that in the
Drell-Yan process, the Wilson lines must be point to the past instead of the future [8]. Time-reversal
symmetry of QCD shows that for most parton densities, the change in the direction of Wilson line
compared with DIS has no effect on the numerical value of the parton density. But certain quantities
involving transverse spin change sign [9] between DIS and Drell-Yan. These include the Sivers
function, which governs the transverse-momentum density of partons in a transversely polarized
nucleon, and the Boer-Mulders function, which governs the transverse polarization of quarks in a
unpolarized hadron.

5. Wilson line self energy?

Further complications arise because there is a segment of the Wilson line that can be regarded
as a color dipole extending all the way to infinity — Fig. 4. Certain topologies of graph are required
in the parton density, but do not arise in the derivation of factorization, e.g., in obtaining Fig. 1(c)
from Fig. 1(a).

One complication, found by Belitsky, Ji, and Yuan [10], is that definition (4.3) entails graphs
like Fig. 5 that have gluons connecting the lower part of the graph to the segment of the Wilson
line that makes the transverse jog at infinity. These graphs vanish in Feynman gauge, so they do
not affect the proof of factorization. But they do appear in the n ·A = 0 gauge, to give gauge-
independent parton densities. This resolves the problem that otherwise the Sivers function is zero
in axial gauge.

A second complication, not apparently recognized before, gives rise to extra divergences. To
solve it, I propose here a further redefinition of the unintegrated quark density to cancel the un-
desired contributions. While this change affects the actual operator definition, it leaves the CSS
evolution equations unaltered. Thus it leaves unaltered the phenomenology described in the previ-
ous section, which uses the form of the evolution equation but not the full implementation of the
operator definition.

The divergences were found by Diehl (private communication) using the Collins-Soper defini-
tion in n ·A = 0 gauge. In the Feynman gauge, the divergence arises from Wilson line self energies.
The one-gluon case, Fig. 6, gives a linear divergence, which in coordinate space is proportional to
the length L of the Wilson line, in the limit L → ∞. This graph does not correspond to any treated
in the factorization proof.

7
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P

Figure 5: Gluons joining to the “jog-at-infinity”
part of the Wilson line, color-coded as in Fig. 4.

P

Figure 6: Self-energy graph for Wilson line.

A natural expectation, in need of a full proof, is that to all orders, and also beyond perturbation
theory, the infinitely long dipole will have L-dependence like that of a Wilson loop, i.e., there is an
exponentiation, giving a factor of the form e−LV (wT ) in coordinate space, where V (wT ) depends on
the separation wT between the two parts of the Wilson line. This divergence should be exactly the
same as in a Wilson loop of size L×wT .

It is also necessary to cancel graphs where gluons connect the long sections of the Wilson line
to the jog at infinity, including the associated UV divergences, since none of these graphs appear in
the factorization proof. Canceling these graphs avoids the problems discussed in [11].

I therefore propose to redefine the unintegrated parton density as follows:

f j(x,kT ;yn) =
∫ dw− d2wT

(2π)3 e−ixP+w−+ikT ·wT lim
L→∞

Matrix element in (4.3)(L)
√

(2L)
. (5.1)

The numerator is just as in Eq. (4.3), but with the Wilson line going out to n · y = L instead of ∞.
In the denominator is a Wilson loop. Since it has two transverse segments, whereas the numerator
has only one, we take the square root of the Wilson loop. Hence, to keep the correct e−LV (wT )

divergence factor, the Wilson loop must be given a length 2L, when the numerator has a Wilson
line has length L. Finally the limit L → ∞ is taken.

We should now have a satisfactory definition, to be taken literally in any kind of calculation
(perturbative or non-perturbative). Various further refinements are possible, e.g., to absorb soft
factors in the CSS factorization formula, but these can be made in terms of the quantity just defined.

6. Summary and outlook

An elementary treatment of DIS in a field theory where the parton model is valid leads to a
definition of a parton density that can be literally interpreted as an expectation value of a parton
number operator in the sense of light-front quantization.

In QCD the definition must be modified by the insertion of a Wilson line. A natural definition is
to use a light-like Wilson line. But in an unintegrated density, this gives rapidity divergences, which
must be cut-off or avoided somehow, for example by a non-light-like Wilson line. The rapidity cut-
off yn is tied to the physics of the cross section, and there is an equation for the evolution with
respect to yn.

A new result is that further divergences arise from the integral to spatial infinity of the dipolar
Wilson line. These can be canceled by a suitable Wilson loop factor, without affecting the standard
CSS phenomenology. Further work is needed to test whether my conjectures in this area are correct.
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Note added after presentation of the talk: The same divergences infect light-front wave func-
tions. This presumably necessitates some changes or distortions in standard formulations of QCD
quantized on the light-front, if the formalism is to be taken literally.
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