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Single-spin asymmetries were long thought to vanish in high-energy scattering processes because

of their specific time-reversal behavior. Time-reversal-odd phenomena, however, appear naturally

when one includes effects of intrinsic transverse momenta of partons. The partons, quarks and

gluons, enter the description of high-energy scattering processes in correlators which contain

quark and gluon fields. The correlators, parameterized in terms of distribution and fragmentation

functions, constitute matrix elements of non-local field configurations. For transverse momentum

dependent (TMD) correlators the non-locality is along a light-front, in contrast to the non-locality

along the light-cone for collinear correlators, integrated over transverse momenta. The TMD

correlators require a careful treatment to assure color gauge invariance, leading to nontrivial gauge

links connecting the parton fields. These give rise to time-reversal-odd phenomena, showing up

as single spin and azimuthal asymmetries. The gauge links, arising from multi-gluon initial and

final state interactions, depend on the color flow in the process, which has consequences for issues

like universality and factorization.
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1. Introduction

The theory of Quantum Chromodynamics (QCD), underlying thequark and gluon structure
of hadrons, is invariant under time-reversal (T), which allows the distinction of T-even and T-
odd quantities. Single-spin asymmetries are specific examples of T-odd observables. In general,
however, T cannot be used as a constraint for the (complex) S-matrix. At high energies the cross
sections of a (hard) scattering process factorizes in (hadronic) soft parts, which we will discuss in
detail, and a partonic cross section. The partonic cross sections at tree-level are T-even with T-odd
phenomena coming in at orderαs beyond tree-level. Thus, one expects at leading order T-even soft
parts (or an even number of T-odd parts) to be relevant in double spin asymmetries and T-odd soft
parts (at least an odd number of them) to be relevant in singlespin asymmetries.

In situations in which one integrates over all transverse momenta one has collinear correlators
describing the soft parts, parametrized in terms of distribution functions (DF) and fragmentation
functions (FF) that depend only on a collinear momentum fraction. For spin 0 and spin 1/2 hadrons
these collinear correlators are only T-even. This leads to the expectation that T-odd phenomena are
absent in high-energy scattering processes. This indeed istrue for processes withonly one hadron
in theinitial state.The example of this is of course inclusive deep inelastic scattering, ep→ eX . For
hadron-hadron collisions or semi-inclusive fragmentation processes even a factorized description
allows T-odd phenomena.

Single spin asymmetries (SSA) are known to exist, persisting at high energies [1]. There
are many studies of mechanisms that lead to single spin asymmetries (SSA) in hard scattering
processes, with Sivers [2] and Collins effects [3, 4] serving as notable examples in the supposedly
simple case of leptoproduction. As alluded to, in collinear approximation (integrating over all
transverse momenta) all leading twist distribution (and fragmentation) functions only depend on
the longitudinal momentum fractionx (or z) are T-even. For spin 0 and spin 1/2 hadrons this
implies e.g. that polarized quarks are only found in polarized hadrons (and vice versa). Single
spin asymmetries (SSA) can occur but restricting ourselvesto collinear correlators they require
twist-three correlators involving quark-gluon matrix elements [5]. For higher spins, e.g. for spin
1 hadrons, one also has T-odd collinear twist-two fragmentation functions [6]. Returning to the
(T-odd) quark-gluon matrix elements, one finds that they canappear at leading order in the specific
limit of a zero-momentum gluon, referred to asgluonic pole matrix elements such as the Qiu-
Sterman matrix elements [7]. Also in model calculations theeffects of these soft gluon interactions
between the target remnant and the hard part have been demonstrated, giving rise to distinct effects
for initial or final state interactions [8].

Going beyond the collinear approximation, the incorporation of intrinsic transverse momenta
of partons provides another mechanism to generate leading order SSA, which can be traced back to
correlations between the intrinsic transverse motion and spin of partons and/or hadron [2, 3]. The
effects are described by transverse momentum dependent (TMD) distribution functions [9, 10, 11],
containing both T-even and T-odd parts and depending on longitudinal momentum fractionx and
the transverse momentumpT as appearing in the Sudakov decompositionp = xP + pT (or p =

(1/z)P + pT for fragmentation). The TMD correlators include Wilson lines, which besides ensur-
ing gauge-invariance are in the case of distribution functions the sole cause of T-odd contributions.
Upon pT -integration one finds after weighing withpT the socalledtransverse moments of the TMD
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Figure 1: Simplest structures (without loops) for gauge links and operators in quark correlators (a)-(b) and
gluon correlators (c)-(f).

distribution functions, which can be separated into T-evenand T-odd parts that are universal and of
which the T-odd part can be identified with the gluonic pole matrix elements.

2. Transverse momentum dependent (TMD) correlators

The TMD distribution functions are projections of the TMD quark correlator defined on the
light-front (LF: ξ ·n≡0)

Φ[C]
i j (x,pT ;n) =

∫
d(ξ ·P)d2ξT

(2π)3 eip·ξ 〈P,S|ψ j(0)U
[C]

[0;ξ ]
ψi(ξ ) |P,S〉

⌋
LF . (2.1)

The Wilson line or gauge link U
[C]

[η ;ξ ]
=Pexp

[
−ig

∫
C ds·Aa(s) ta

]
is a path-ordered exponential

along the integration pathC with endpoints atη andξ , ensuring gauge-invariance. In the TMD
correlator 2.1 the integration pathC in the gauge link turns out to be process-dependent.

In a diagrammatic approach the Wilson lines arise by resumming all collinear gluons ex-
changed between the soft and the hard partonic parts of the hadronic process. The integration
pathC is fixed by the (color-flow structure of) the hard partonic scattering [12]. Basic examples
(see Fig. 1) are semi-inclusive deep-inelastic scattering(SIDIS) where for the quark correlator the
resummation of all final-state interactions leads to the future pointing Wilson lineU [+], and Drell-
Yan scattering where the initial-state interactions lead to the past pointing Wilson lineU [−]. These
links connect the parton fields in the correlator, running along the light-like directionn, conjugate to
P (satisfyingP ·n = 1 andn2 = 0) and closing in the transverse direction at lightcone infinity [13].
For gluons the correlators including links are given by [14]

Γ[C,C′]
αβ (x, pT ;n) =

∫
d(ξ ·P)d2ξT

(2π)3 ei p·ξ 〈P,S|Tr
(

Fn
β (0)U [n,C]

[0,ξ ] Fn
α(ξ )U [n,C′]

[ξ ,0]

)
|P,S〉

∣∣∣∣
LF

, (2.2)

with the simplest possibilities also shown in Fig. 1.

3. Observables

Considering intrinsic transverse momenta makes sense because it is possible to access the
effects of them in experiments. The collinear fractions (x or z) in the Sudakov expansion of the
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parton momenta can be related to kinematical ratios of hard momenta (e.g.x ≈ xB = Q2/2P · q
and z ≈ zh = Ph · P/P · q in semi-inclusive deep inelastic scattering) up toO(1/Q2) corrections.
Therefore the quantityqT = q + xB P−Ph/zh ≈ kT − pT can be measured in semi-inclusive deep
inelastic scattering (SIDIS),γ∗(q) + N(P) → h(Ph)+ X . It is zero at leading order (O(Q) in the
hard scale), but relates to the intrinsic transverse momenta atO(M). Essential in establishing the
relation to the intrinsic transverse momenta is the assumption of a particular partonic subprocess, in
the case of SIDISγ∗(q)+ q(p) → q(k). The vectorqT is the transverse momentum ofq in a frame
in which P and Ph are chosen parallel or (experimentally more useful) related to the transverse
momentum ofPh, qT = −Ph⊥/zh in a frame in whichq andP are chosen parallel. WithQ2

T = −q2
T ,

one needs TMD functions whenQT ∼ O(M) and one needs a collinear description involving a
subprocess with one more parton radiated off whenQT ∼ O(Q). Matching of these approaches was
condidered in Ref. [15]. Not only in electroweak processes like SIDIS or the Drell-Yan process
can transverse momenta be accessed, but also one can consider inclusive hadron-hadron scattering.
The experimental signature in this case is the non-collinearity of the produced particles/jets in the
plane perpendicular to the colliding beam particles, outlined in detail in Ref. [16].

Accessing intrinsic transverse momenta in most cases requires a study of azimuthal depen-
dence in high energy processes. Although the effects are in principle not suppressed by powers of
the hard scale in comparison with the leading collinear treatment, it requires measuring hadronic
scale quantities (transverse momenta) in a high momentum environment. We already mentioned
that for the explanation of single spin asymmetries time reversal invariance plays an important
role: The T-invariance of QCD allows to distinguish quantities and observables according to their
T-behavior. Leading twist collinear correlatorsΦ(x) andΓ(x) (i.e. leading in an expansion in the
inverse hard scale) are all T-even. For the TMD correlators,however, the T-operation interchanges
Φ[+](x, pT ) ↔ Φ[−](x, pT ) (with similar relations holding for gluon TMD correlators), allowing us
to construct correlators with T-even and T-odd operator combinations and providing an explanation
of SSA.

We note that for fragmentation functions the appearance of an hadronic out-state in the defini-
tion, prohibits the use of T-symmetry as a constraint in the first place. One thus in principlealways
has both T-even and T-odd functions appearing in the parametrization, although these do only ap-
pear at subleading twist or for TMD correlators. It is for many purposes still useful to separate the
correlators into two classes containing T-even or T-odd operator combinations in analogy with the
case of distributions, referred to as naive T-even or naive T-odd. But one must be aware that both
the naive T-even and naive T-odd correlators contain T-evenand T-odd parts and corresponding FFs
in the parametrization.

4. TMD treatment

As already referred to in section 2 the gauge links in the correlators are the result of resumming
leading matrix elements with collinear gluons. The presence of links, differing for each partonic
sub-diagram and its color-flow, results in the following generic expression for a hard cross section
at measuredqT (involving in general complex diagram-dependent gauge-link paths),

dσ
d2qT

∼ ∑
D,abc...

Φ[C1(D)]
a (x1, p1T )Φ[C2(D)]

b (x2, p2T ) σ̂ [D]
ab→c...∆

[C′
1(D)]

c (z1,k1T ) . . .+ . . . (4.1)
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where the sumD runs over diagrams distinguishing also the color flow andabc . . . is the summation
over quark and antiquark flavors and gluons. Dirac and Lorentz indices, as well as traces are
suppressed. The ellipsis at the end indicate contributionsof other hard processes.

The results for cross sections after integration over the transverse momentaqT also allows
integration over the partonic transverse momenta and one obtains thepath-independent collinear
correlatorsΦ(x) rather than the path-dependent TMD correlatorsΦ[C(D)](x, pT ). Thus, from Eq. 4.1
one gets the well-known collinear result

σ ∼ ∑
abc...

Φa(x1)Φb(x2) σ̂ab→c...∆c(z1) . . .+ . . . , (4.2)

whereσ̂ab→c... = ∑D σ̂ [D]
ab→c... is the partonic cross section.

Constructing a weighted cross section (azimuthal asymmetry) by including a weightqα
T in the

qT -integration leads to

〈qα
T

dσ
d2qT

〉 ∼ ∑
D,abc...

Φα [C1(D)]
∂a (x1)Φb(x2) σ̂ [D]

ab→c...∆c(z1) . . .+ . . . (4.3)

containing a number of terms in each of which for one of the partons atransverse moment appears,

Φα [C]
∂ (x) =

∫
d2pT pα

T Φ[C](x, pT ) = Φ̃α
∂ (x)+C[U(C)]

G πΦα
G(x,x). (4.4)

These transverse moments still contain a path-dependence,so Eq. 4.3 cannot be simplified imme-
diately but, as also shown in the above equation, the path dependence is contained in a (gluonic
pole) factorCG, which can easily be calculated. The first term,Φ̃∂ (x), is a collinear correlator
containing matrix elements with T-even operators, whileΦG(x,x−x1) is a collinear correlator with
a structure of a quark-gluon-quark correlator involving the gluon fieldFnα . In Eq. 4.4 one needs
the zero-momentum (x1 = 0) limit for the gluon momentum. This matrix element is knownas the
gluonic pole matrix element. The operators involved are T-odd. Both collinear correlators on the
RHS in Eq. 4.4 are link-independent. Using this decomposition one can write down a parton-model
like expansion for the single-weighted cross section〈qα

T σ〉 in Eq. 4.3 in whichΦ̃α
∂ (x) is multiplied

with the partonic cross section, whileπΦα
G(x,x) is multiplied with thegluonic pole cross section,

σ̂[a]b→c... = ∑
D

C[U(C(D))]
G σ̂ [D]

ab→c..., (4.5)

which besides the normal partonic cross sections constitutes a different gauge-invariant combina-
tion of the squared amplitudes [17]. For a number of processes, the consequences for (weighted)
azimuthal single spin asymmetries have been investigated [18]. For more complex weightings or
trying to stay at the unintegrated level, one has to make additional assumptions outlined in Ref. [14].
In this paper also the split-up of TMD functions in

Φ[U ](x, pT ) = Φ[even](x, pT )+ G[U ]
G Φ[odd](x, pT )+ δΦ[U ](x, pT ), (4.6)

with Φ[even/odd] = 1
2(Φ[+] ±Φ[−]) is discussed. The even and odd combinations are constructed

from the correlators with simple links shown in Fig. 1. Upon integration one hasΦ[even](x) = Φ(x),
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Φ[odd](x) = 0, Φα [even]
∂ (x) = Φ̃α

∂ (x), andΦα [odd]
∂ (x) = πΦα

G(x,x). The additional terms is referred

to asjunk TMD satisfyingδΦ[U ](x) = δΦα [U ]
∂ (x) = 0.

Similar combinations of even and odd correlators can be constructed from the simplest gluon
correlators [14], although one must be aware that there are two types of gluonic pole matrix ele-
ments [19] corresponding to the two different ways to construct color singlets for three gluons and
correspondingly, there are for instance two distinct gluon-Sivers distribution functions.

5. Conclusions

The approach to understand T-odd observables like single spin asymmetries via the TMD
correlators and the non-trivial gauge link structure unifies a number of approaches to understand
such observables, in particular the collinear approach andthe inclusion of soft gluon interactions.
Although the treatment of fragmentation correlators also separates into naive T-even and naive
T-odd parts with T-even and T-odd operator structure respectively, the gluonic pole contributions
(naive T-odd parts) in the case of fragmentation might very well vanish. Indications come from the
soft-gluon approach [20] and a recent spectral analysis in aspectator model approach [21].
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