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1. Introduction

A relativistic framework to treat three-body systems is necessary for our understanding of the
valence structure of baryons in terms of constituent quarks. One possible relativistic approach
is the quantization on the light-front (LF) hypersurface [1]. To investigate the baryon structure
with electroweak probes and large momentum transfers, the covariance of LF wave functions un-
der kinematical boosts is essential [1]. In this context, itis worthwhile to control the covariant
properties of the adopted LF framework and its relation to a four-dimensional description [2].

In order to investigate the structure of the baryon LF valence wave function one has to deal
with a relativistic three-body problem. Starting from a four-dimensional three-body Bethe-Salpeter
equation (BSE), the Faddeev decomposition has to be introduced and the LF projection defined with
the correspondent expansion in the Fock space. So far, even the treatment of light-front dynamics
(LFD) at leading order (LO) constitutes an involved problem, because a systematic expansion to
construct LF three-body equations from a given covariant dynamics is still lacking.

The quasi-potential approach (QPA) offers one possible solution to the problem, by supplying
a systematic framework to construct the light-front dynamics of composite systems from a given
4-dimensional model. The approach avoids subtle problems,such as the double-counting of LF
reducible graphs (see e.g. [2]), and the spurious divergences in the transverse momenta from the
LF projection of the two-fermion box diagram [3, 4]. It also treats consistently the fermionic
LF instantaneous terms. The QPA is also useful in the study ofthe electromagnetic structure
of composite systems with conserved current operators, within LFD, for two bosons [5] or two
fermions [6]. The next step is to apply the QPA to define the light-front dynamics of a 3-body
system.

In this contribution we apply the QPA to the four-dimensional three-body BS equation in
order to provide the systematical expansion of the kernel ofintegral equation for LF valence wave
function. We show how the QPA works in the study of relativistic three-body systems by going
beyond the LO kernel of the LF integral equation. We derive the corresponding next-to-leading
order (NLO) contribution to the kernel. We exemplify the method in a three-boson system with a
contact interaction by starting from the ladder approximation of the covariant BS equation. The
LF bound state equation for the valence wave function in LO and NLO will be obtained. Previous
works [7, 8, 9, 10] were limited only to the LO kernel.

2. QP Expansion and Faddeev Decomposition

We will restrict ourselves to the ladder BSE for three bosons. Formally the potential in the
four-dimensional equation is built by multiplying the two-body interactionV(2)

jk from the exchange
of a quantum between the particlesi and j and by the inverse of the individual propagator of the
spectator particlei, Si :

V =
3

∑
i=1

Vi ; Vi = V(2) jkS−1
i . (2.1)

This approximation does not take into account three-body irreducible crossed ladders, self energies,
vertex corrections and irreducible 4-dimensional three-body interactions. In terms of the quasi-
potential approach, the BSE for the transition matrixT = V +VG0T, is substituted by a modified
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one,T =W+WG̃0T. This implies the choice of an auxiliary Green’s function(G̃0). HereG0 is the
free four-dimensional three-body Green’s function. To keep the dynamical content of the original
BSE, the quasi-potentialW should be expressed in terms of the interactionV asW = V +V∆0W,
where∆0 := G0− G̃0.

The QPA is a useful tool to project a given four-dimensional dynamics onto the light-front hy-
persurface when a particular choice of the auxiliary Green’s function is made [2],̃G0 := G0| g

−1
0 |G0,

whereg0 = |G0| is the free light-front resolvent, including phase-space factors. The "bar" opera-
tion on the right or on the left of a four-dimensional matrix element means that the integration
overk− = k0 +k3 is performed. These integrations eliminate the relative light-front time between
the particles. For three-body systems, taking into accountfour-momentum conservation, only two
single particle momenta are independent, therefore the elimination of the relative LF time requires
the definition of a LF time projection operation according to

|A :=
∫

dk−1 dk−2 〈k
−
1 k−2 |A , A| :=

∫
dk−1 dk−2 A|k−1 k−2 〉, (2.2)

with A being an operator that has matrix elements depending on two independent momenta after
the center of mass motion is factorized.

In order to make the practical procedure clear, let us write explicitly the three-free Green’s
function:

〈k−1 ,k−2 |G0|k
′−
1 ,k′−2 〉 =

−i
(2π)2

δ (k−1 −k′−1 )

k̂+
1 k̂+

2 (K+− k̂+
1 − k̂+

2 )(k−1 − k̂−1on)
×

δ (k−2 −k′−2 )

(k−2 − k̂−2on)(K
−−k−1 −k−2 − (K− k̂1− k̂2)

−
on)

. (2.3)

The LF projection yields the LF free Green’s function as

g0(k1,k2) =
iθ(K+ −k+

1 −k+
2 )θ(k+

1 )θ(k+
2 )

k+
1 k+

2 (K+−k1
+−k+

2 )(K−−k−1on−k−2on− (K−k1−k2)
−
on)

, (2.4)

where, for sake of simplicity, we setk ≡ (k+,~k⊥). The reader is addressed to refs.[2, 3, 5, 6] to
follow the details of the formal manipulations within QPA toperform the light-front projection.

In the 3-body context, the reduced or three-dimensional integral equation for the LF transition
matrix is t = w+ wg0t, which has a Lippman-Schwinger form analogous to the two-body one.
The effective interactionw comes from the projection of the quasi-potentialW to equal light-front
times. We now perform the Faddeev decomposition [11] of the transition matrix. Hence, we write
ti = wi + wig0t, with t = ∑3

i=1 ti andwi = g−1
0 |G0WiG0| g−1

0 . This decomposition follows from a
corresponding decomposition of the 4-dimensionalW = ∑3

i=1Wi .
The Faddeev decomposition ofW = V +V∆0W is due toV = ∑3

i=1Vi resulting inWi = Vi +

Vi∆0W . The integral equation for the Faddeev component of the quasi-potential is derived from
Wi = Vi +Vi∆0(Wi +Wj +Wk). It can be rewritten as(1−Vi∆0)Wi = Vi +Vi∆0(Wj +Wk). Inverting
the operator on the left side ofWi , one has thatWi = W(2)i +W(2)i∆0(Wj +Wk), whereW(2)i =

Vi +Vi∆0W(2)i is the quasi-potential for the two-body system with particle i as a spectator.
The expansion in powers ofV of Wi is given by:

Wi = Vi +Vi∆0(Vi +Vj +Vk)+Vi∆0(Vi +Vj +Vk)∆0(Vi +Vj +Vk)+ . . . . (2.5)
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The LO and NLO terms are given byWLO
i =Vi and byWNLO

i =Vi +Vi∆0(Vi +Vj +Vk), respectively.
Making the expansion of the Faddeev equations forWi , only connected terms in the two-body
subsystem quasi-potential appear:

Wi = W(2)i +W(2)i∆0(W(2) j +W(2)k)+W(2)i∆0W(2) j∆0(W(2)i +W(2)k)+ . . . . (2.6)

The Faddeev components of LF effective potential in LO and NLO are written in terms of the above
expansion as

wLO
i = g−1

0 |G0ViG0| g−1
0 , wNLO

i = wLO
i +g−1

0 |G0Vi∆0(Vi +Vj +Vk)G0| g−1
0 , (2.7)

respectively. In the next section we will show in an example the explicit expressions for the three-
boson LF bound state equations in LO and NLO.

3. Three-boson model with zero range interaction

The interaction Lagrangian for a zero range model can be written asLI = 1
4!λφ4. Following

the prescription given by Eq.(2.1), we have for the potential Vi :

〈k j ,kk|Vi |k
′
j ,k

′
k〉 = λ (2π)2δ 4(ki −k′i)(k

2
i −m2). (3.1)

For the contact interaction, we can easily demonstrate the propertyVi∆0Vi = 0. Therefore, we have
thatW(2)i =Vi , which allows to write the integral equation for the Faddeevcomponent of the quasi-
potential asWi =Vi +Vi∆0(Wj +Wk). The expansion of the this equation gives the LO and the NLO
quasi-potential as:WLO

i = Vi andWNLO
i = WLO

i +Vi∆0(Vj +Vk), respectively.

3.1 LO three-boson LF dynamics

The effective potential in LO iswLO
i = g−1

0 |G0ViG0|g
−1
0 , which has matrix elements given by:

wLO
i (k j ,kk;k

′
j ,k

′
k) = −2π iλ k+

i δ 3(ki −k′i) . (3.2)

The equation for the Faddeev components of the bound-state vertex in is given byvi = wig0(vi +

v j + vk) which in LO gives thatvLO
i = (1−wLO

i g0)
−1wLO

i g0(vLO
j + vLO

k ). Introducing the matrix
elements ofwLO

i andg0 in the above equation one gets:

vLO
i (k j ,kk) = 2

∫
d3k′id

3k′j〈k j ,kk|(1−wLO
i g0)

−1wLO
i |k′i ,k

′
j〉g0(k

′
i,k

′
j)v

LO
k (k′i,k

′
j) , (3.3)

where the factor 2 comes from the symmetry of the total vertexfunction by the exchange of the
bosons. In detail

〈k j ,kk|(1−wLO
i g0)

−1wLO
i |k′i ,k

′
j〉 = iτ(M2

jk)k
+
i δ 3(ki −k′i) , (3.4)

whereM2
jk = (K−kion)

2. Explicitly one has that the two-boson amplitude is given by

τ(M2
jk) = 2π


λ−1+

1
8π2

∫ 1

0
dx

∫
d2k⊥

1

x(1−x)
(

M2
jk −

k2
⊥+m2

x(1−x)

)



−1

. (3.5)
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The integral equation for the Faddeev component of the three-boson vertex becomes:

vLO
i (k j ,kk) = −2τ(M2

jk)

∫
d3k′j

θ(k′+j )θ(K+ −k+
i −k′+j ) vLO

k (ki,k
′
j)

k′+j (K+−k+
i −k′+j )(K−−k−ion−k′−jon− (K−ki −k′j)

−
on)

, (3.6)

where the elementary volume isd3k = dk+d2k⊥/(2(2π)3). Note that the dependence of left hand
side of Eq. (3.6) depends only onki, therefore we can write thatvLO

i (k j ,kk) ≡ vLO
i (ki), and making

the transformation of the integration momentum fromk′j to k′k, owing tok′j = K−k′k−ki, one obtain
the LO three-body bound state equation derived in ref.[7]. In that work, a regularization in the
transverse momentum of the spectator particle was used. In ref.[9], the cutoff was not introduced
and it was discovered by numerical calculations that the three-boson bound states exist in a range
of values of two-boson bound state masses.

3.2 NLO three-boson LF dynamics

We deduce now the contribution to the kernel of the integral equation for the bound-state at
next-to-leading order. The QP in NLO isWNLO

i = WLO
i +Vi∆0(Vj +Vk) and the corresponding

effective potential is:

wNLO
i = wLO

i + ∆wNLO
i , ∆wNLO

i = g−1
0 |G0Vi∆0VjG0|g

−1
0 +g−1

0 |G0Vi∆0VkG0|g
−1
0 . (3.7)

The integral equation for the Faddeev component can be written as:

vNLO
i = (1−wLO

i g0)
−1wLO

i g0 ∑
n6=i

vNLO
n +(1−wLO

i g0)
−1∆wNLO

i g0∑
n

vNLO
n , (3.8)

where the first term in the right hand side is analogous to Eq. (3.6). The second term is connected
and it gives the NLO contribution to the three-boson light-front bound-state equation:

vNLO
i (k j ,kk) = −τ(M2

jk)


2

∫
d3k′j

θ(k+
i )θ(k′+j )θ(K+ −k+

i −k′+j ) vNLO
k (ki,k

′
j)

k′+j k′+k

(
K−−k−ion−k′−jon− (K−ki −k′j)

−
on

)+

2πλ
∫

d3k′jd
3k′k

θ(k+
i −K+ +k′+k )θ(K+ −k′+j −k′+k )θ(k′+j )θ(k′+k )

k′+j k′+k (k+
i −K+ +k′+k )(K+ −k′+j −k′+k )

×

1(
K−−k′−jon−k′−kon− (K−k′j −k′k)

−
on

)
vNLO

i (k′j ,k
′
k)+vNLO

j (k′k,k
′
i)+vNLO

k (k′i,k
′
j)

(K−−k−jon−k−kon−k′−jon− (ki −K +k′k)
−
on− (K−k′j −k′k)

−
on)

+(k′k ↔ k′j)
)
. (3.9)

The integrand of the second term in the above equation comes fromg−1
0 |G0Vi∆0VkG0|∑n vNLO

n while
the term indicated by(k′k ↔ k′j) comes fromg−1

0 |G0Vi∆0VkG0|∑nvNLO
n . In Fig. 1, the LO and NLO

are represented diagrammatically.
The NLO contribution to the kernel of Eq. (3.9) is an irreducible LF three-boson interaction

(see also [12]), which comes from the coupling of the valencestate to a five-boson intermediate
state (see Fig. 1). The virtual five-body system is heavier than the three-boson system leading to
an effective interaction that acts at short distances. The solution of of Eq. (3.9) still requires that a
renormalization procedure should be applied to the integral equation as the bare coupling constant
appears in the NLO kernel. This issue will be not tackled here.
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Figure 1: Diagrammatical representation of the LO (left) and NLO (right) contributions to the kernel of the
LF integral equation for the Faddeev components of the vertex function of the valence state .

4. Summary

We show how to use the quasi-potential approach to project a field-theoretic dynamics of
three-particle systems in the ladder approximation to the light-front. Our starting point is the four-
dimensional Bethe-Salpeter equation for three particles.The projection technique allows to elim-
inate three-body reducible diagrams from the kernel of the integral equation for the valence wave
function. We applied the Faddeev decomposition to the QP to derive connected equations for the
corresponding components. From these components we construct the next-to-leading order con-
tribution to the kernel of the light-front three-body integral equation for the transition matrix. We
exemplify the method for a bound three-boson system with a contact interaction deriving explicitly
the NLO integral equation for the Faddeev component of the LFvertex function of the valence
component of the bound state. Within the same framework we can also derive conserved cur-
rent operators acting on the valence sector of three-body systems. This problem and the issue of
renormalization of the NLO LF three-body equation are left for a future work.

We thank Fundação de Amparo à Pesquisa do Estado de São Paulo and Conselho Nacional de
Desenvolvimento Científico e Tecnológico for partial support.
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