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Similarity transformations have been used in light-front quantized theorieguite some
time now [1], in particular for the description of relativistic bound states. démeeral idea is to
reduce the size of the subspace of Fock space that is necessarg ftgstription of the bound
state at the expense of a more complicated Hamiltonian. One very cleameutidtion of such
an approach is in terms ®f-particle Fock space sectors [2]. While the main motivation for the
similarity transformation technique is its eventual application to QCD bound statedadrons,
the approach has been tested for Yukawa theory [3] and QED [4, 5, 6]

These applications have evidenced some problems of the approachly reotalmphysical
UV cutoff dependence [3, 5]. In this contribution, we will apply a similar mggh to equal-time
gquantized theories, in particular to QED. In addition to obtaining quite promisisigits, we hope
to shed some light on the problems that appear in the context of light-framtiged theories.

In equal-time quantized theories, a similarity transformation is naturally indugedgener-
alization of the Gell-Mann—Low theorem [7]. For the determination of relditvisound states, we
apply the theorem to the subspace of Fock space that contains all stdtesofstituents as free
particles. For concreteness, we will consider states of one electronrendntimuon, although
we will allow the mass of the “antimuon” to take any value. As in the earlier applicatid the
same formalism to the Wick-Cutkosky model and Yukawa theory [8, 9], teetdfe Hamiltonian
generated by the generalized Gell-Mann-Low theorem contains the igtiatkinetic energies of
the constituents and an effective potential. As for the kinetic energiesptrectons to the “bare”
values from the expectation value of the free part of the Hamiltonian aexctegbto lead to mass
renormalizations identical to the ones in covariant formulations, from geasguments that were
made explicit in the case of Yukawa theory [9]. In order to identify all-orcentributions to
the vacuum energy, the kinetic energies, and the interaction of the contjtaadiagrammatical
representation is helpful (cf. Ref. [8]).

As for the effective potential, the matrix elements in Coulomb gauge read totlowesivial
order in a perturbative expansion,
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Here,|pa,r;ps,S) symbolizes the state of an electron with 3-momenpgand spin orientation
(in a spinor basis yet to be specified) and an antimuon with 3-momepguand spin orientation
s. We use the shorthand, = (M3 +p3)"/2 andES, = (mg -+ p3)*/2 for the kinetic energies. For
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convenience, we have introduced the charge-conjugate Dirac spigigrs, S) for the antimuon,
while ua(pa, ) represent the electron spinors. The spatially transverse photon ptitamizectors
&™) (k) satisfy the relatiory? _, &) (k) e/ (k) = 80 (k) = & —kik; (wherek = k/[K|).

The interpretation of the effective potential (1) is the following: the sedm&lstems from
the instantaneous Coulomb potential, easily identified by the momentum deperidehe de-
nominator (the Fourier transform of the spatial Coulomb potential), and multiplithdtie charge
densities of the Dirac currents. The following lines are the result of texssvphoton exchange,
the more complicated denominators indicating a retarded interaction, and tleecDirants being
contracted with the corresponding photon polarization vectors.

The delta function in Eq. (1) shows that total 3-momentum is conserved kaffdwive in-
teraction, and in the following we will consider the center-of-mass system.g0 pa -+ ps =
P+ Pg = 0. In order to simplify the diagonalization of the effective Hamiltonian, we esptthe
Dirac spinors in terms of Pauli spinors (using the Dirac-Pauli represen)do find the effective
Schrddinger equation in the c.m.s.,
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Here,p = pa = —pg, the spinorial wave functiow(p) is defined asp(pa)(2m)36(pa+ ps) =
Srs(PA, 1 PB,S|@) [Xr ® Xs|, andaa (o) is understood to act on the Pauli spingr(xs) only. E’

is the difference between the energy of the bound state and the vacueugy.e@f the full state
|@) in Fock space (with zero total momentum), only its projection to one-electr@santimuon
stategpa,r;ps,S) appears. The effect of its components in other Fock space sectors isitijplic
taken care of (to the order considered) by the effective potential. tBqué) is a well-defined
eguation which admits a discrete spectrum of eigenvalues as can be shavdetailed analytical
investigation of the large-momentum behavior of its solutions, and by a divecercal solution
of the equation to which we now turn.

To this end, we take into account the rotational and parity invariance dREdeigenstates of
total angular momentuihcan be constructed as usual by adding relative orbital angular momentum
L and total spirS. For convenience, instead of using parity itself, we will label the eigersshate
the “relative parity” 7’ defined through{—1)- = 7(—1)’. SinceS= 0,1, for givenJ the sector
17 = +1 contains the states with=J andS=0 orS= 1, while forr’ = —1we canhave =J—1
orL=J+1, withS=1in both cases. In any sectdF , the two different possibléLS)-states will
mix, except forJ = 0 (only one state exists in each of the two sectors), for equal masses [the
states of thém’ = +1)-sector do not mix because of the additional exchange symmetry] , and in
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the one-body limit where the mass of one of the constituents goes to infinity [nagriix the
(' = —1)-sector]. The one-body limit will be discussed more fully later on.

After explicitly carrying out the contractions of the spatial indices in the trarse photon
exchange part, the formulae employed before in the solution of the e#edtirddinger equation
for the case of Yukawa theory [9] can be used for the present dAewill focus here on the
partial-wave decomposition which is well-known for the (Fourier transfabn@oulomb potential,
and has been calculated in Ref. [9] for he-part of the transverse photon exchange. The partial
waves of thefql?,-—part of the transverse photon exchange have not appeareé hefbare given by
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1
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The integral diverges likép— p') 2 for p’ — pwhich would lead to a divergence in tipgintegral.
These divergences are spurious and cancel in pairs in the completssirps. However, for
the numerical calculation, we have to extract the divergent parts afiorpethe cancellations
analytically. Fortunately, the extraction of the divergencies is simple: theyrat co¥ = 1, and
sinceP (1) = 1, we can conveniently splR_(cosf) in [1+ (cosd — 1)PR(cosh)], thus defining

a “reduced” Legendre polynomiaRf(cosB). The divergent parts in Eq. (3) originating from the
1 in this decomposition can be analytically cancelled in pairs, leaving a finiteilmgtidn. The
remainder of the integral is logarithmically divergent fir— p (as are the other partial waves),
and the followingp'-integration is convergent.

The rest of the numerical solution of Eq. (2) proceeds in strict analaglythe Yukawa case
[9]. The results for the lowest energy eigenvalues thus obtained ategio Figs. 1 and 2 for equal
constituent masses and fine structure constants0.45. The binding energies are normalized to
pa?, u being the reduced mass, so that the comparison with the nonrelativistiy eigegvalues
pa?/2n? is immediate.

We find that for valuesr < 0.1, the energy levels are dominated by the nonrelativistic val-

ues plus the leading relativistic corrections (the leading-order fine apertige structure) of or-
der pa®, both in our numerical results and in the perturbative calculations of bstaid QED.
In this region of small coupling constants, the numerical results are in ggegment with the
perturbative calculations, apparently only limited by the numerical preciskan.larger values
a > 0.1, higher perturbative orders become important and our numericdtgefviate in some
cases strongly from the lowest-order perturbative predictions.

In Table 1 we compare our results far= 0.3 with two different calculations in light front
guantization [5, 6] (we use the data for the Gaussian similarity function in the petper). In the
table, we label the states by the nonrelativistic notati&ti'L ; and also indicate the corresponding
sectors)™. There is a clear tendency in our results towards more negative enérmgigstronger
binding, compared t&(a*)-perturbation theory. The ordering of the different levels, howeser,
the same as in perturbation theory. We can also see that the differencturbatton theory in the
direction of stronger binding is systematically larger Sstates than foP-states, and also larger
for (J = 0)-states than fofJ = 1)-states, and smallest for thi@ = 2)-state. For the light-front
results, this latter tendency is inverted; estates have even higher energies than in perturbation
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Figure 1: The binding energf = E’ — my — mg as a function of the fine structure constant € /4 for
the case of equal masseg = me. E is normalized tqua? where is the reduced masgi(= ma/2 in the
present case). Plotted are the lowest energy leveldfor 0T and T corresponding to the nonrelativistic
principal quantum number= 1.

perturbation our

state theory results Ref.[5] Ref.[6]
115 (0%) —0.559 -0583 0525 0551
135 (1) —0.499 -0.506 0501 -0.525
21%(0")  -0.1343 01373 -0.1301 -0.1332
2%%»(0°)  —-01306  —0.1315 -0.1335 -0.1369
2%P(17) —01278 01279 -0.1298 -0.1327
2%5(17)  —01268  —0.1277 -0.1269 —0.1298
2P (1Y) -0.1268 01269 -0.1290 —0.1315
2%p,(27) —-0.1255  —-0.1255 -0.1277 -0.1302

Table1: Binding energie& /ua? for equal masses from perturbation theoryitqua®), from our numerical
results, and from Refs. [5] and [6]
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Figure2: As Fig. 1, but for the energy levels corresponding to the alativistic principal quantum number
n=2.

theory. Both light-front calculations are qualitatively similar, only that the inigds stronger

throughout in the similarity transform approach of Ref. [6]. In conclasiour approach gives
qualitatively different results from the similarity transformation techniqudiagpo the light-front

guantized theories (in the approximations presently considered). We sizghbowever, that
there is an unphysical logarithmic UV cutoff dependence in the light-freslts (for the cited
values, the cutoff has been set equal to the constituent masses).

In order to gain additional insight into the approach presented, it is Hdlpftonsider the
one-body limit, i.e., the limit of infinite mass of the antimuon. One can show that in this limit th
Schradinger equation (2) reduces to the equation for an electron irntenmaipotential. The con-
tribution from transverse gluon exchange becomes suppressedIlsutheoimstantaneous Coulomb
interaction remains (similarly to the nonrelativistic limit). Also, the spin of the heatiyraion de-
couples from the dynamics, leading to the exact degeneracy (within n@hprécision) of pairs
of states in the numerical solution of Eq. (2) in this limit.

We can combine the effective Schrédinger equation for the electron fuaegon ¢a(p,r)
in the one-body limit with the charge conjugate equation for a positron wanaifun @,(p,r) to
obtain the Dirac form

3y
(a@-p+pBma) <P(I0)—/ (Z,gg {/\’i(p)@i,)z/\ﬁ(p’)
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where % (p) are the usual Casimir projectors to positive and negative energy solutitmesy
decouple particle and antiparticle equations which distinguishes Eq. (@)tfre Dirac equation.
Although we thus lose the cherished covariance properties of the Ditetien, we gain a clear
one-particle interpretation of the wave function. The complete Fock statelinglarbitrary num-
bers of electron-positron pairs can also be recovered perturbaitivelyr approach. In an expan-
sion around the nonrelativistic limit, the projectors do not contribute to theciinsections, and
Eq. (4) reproduces the fine structure contained in the Dirac equation.

Analogously, in the case of two dynamical particles, the effective Samgédequation for par-
ticles AB can be combined with the charge conjugate equation for two antipariBleShe result
is a reduced Salpeter equation where the instantaneous interaction is obtaindigst principles
via the generalized Gell-Mann—Low theorem. The first relativistic correstiothe nonrelativistic
limit yield the Breit interaction and, as a consequence, the correct finbygpetfine structure of
the system. The Casimir projectors again guarantee a two-particle wavefuinéerpretation and
avoid anomalies like the Brown-Ravenhall disease.
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