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We identify an invariant light-front coordinate ζ which allows the separation of the dynamics
of quark and gluon binding from the kinematics of constituent spin and internal orbital angu-
lar momentum. The result is a single-variable light-front Schrödinger equation for QCD which
determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and
orbital angular momentum. This frame-independent light-front wave equation is equivalent to
the equations of motion which describe the propagation of spin-J modes on anti-de Sitter (AdS)
space. Light-front holography is a remarkable feature of AdS/CFT: it allows hadronic ampli-
tudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of
hadrons in physical space-time, thus providing a relativistic description of hadrons at the ampli-
tude level. In principle, the model can be systematically improved by diagonalizing the full QCD
light-front Hamiltonian on the AdS/QCD basis. Quark and gluon hadronization can be computed
at the amplitude level by convoluting the off-shell T matrix calculated from the QCD light-front
Hamiltonian with the hadronic light-front wavefunctions. We also note the distinction between
static observables such as the probability distributions computed from the square of the light-front
wavefunctions versus dynamical observables such as the structure functions and the leading-twist
single-spin asymmetries measured in deep inelastic scattering which include the effects of initial
and final-state interactions.
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1. Introduction

One of the most important theoretical tools in atomic physics is the Schrödinger equation,
which describes the quantum-mechanical structure of atomic systems at the amplitude level. Light-
front wavefunctions (LFWFs) play a similar role in quantum chromodynamics (QCD), provid-
ing a fundamental description of the structure and internal dynamics of hadrons in terms of their
constituent quarks and gluons. The natural concept of a wavefunction for relativistic quantum
field theories such as QCD is the light-front wavefunction ψn(xi,k⊥i,λi) which specifies the n
quark and gluon constituents of a hadron’s Fock state as a function of the light-cone fractions
xi = k+/P+ = (k0 +k3)/(P0 +P3) transverse momenta k⊥i and spin projections λi. The light-front
wavefunctions of bound states in QCD are relativistic generalizations of the Schrödinger wavefunc-
tions of atomic physics, but they are determined at fixed light-cone time τ = t + z/c – the “front
form” introduced by Dirac [1] – rather than at fixed ordinary time t.

When a flash from a camera illuminates a scene, each object is illuminated along the light-
front of the flash; i.e., at a given τ . In contrast, setting the initial condition using conventional
instant time t requires simultaneous scattering of photons on each constituent. Thus it is natural
to set boundary conditions at fixed τ and then evolve the system using the light-front Hamiltonian
P− = P0−P3 = id/dτ. The invariant Hamiltonian HLF = P+P−−P2

⊥ then has eigenvalues M 2

where M is the physical mass. Its eigenfunctions are the light-front (LF) eigenstates whose Fock
state projections define the light-front wavefunctions.

A remarkable feature of LFWFs is the fact that they are frame independent; i.e., the form of
the LFWF is independent of the hadron’s total momentum P+ = P0 + P3 and P⊥. The light-front
formalism for gauge theories in light-cone gauge A+ = 0 is particularly useful in that there are no
ghosts and the gluon polarization is purely transverse: Sz

g = ±1. Thus one has a direct physical
interpretation of orbital angular momentum. The constituent spin and orbital angular momentum
properties of the hadrons are also encoded in the LFWFs. For example, the internal spin and orbital
angular momentum is conserved for each n-particle LF Fock state: ∑

n
i=1 Sz

i + ∑
n−1
i=1 Lz

i = Jz, since
there are n− 1 relative orbital angular momentum. Since the plus momenta are conserved and
positive, the vacuum in front form is trivial except for k+ zero modes. For example, in the case
of the Higgs theory, a c-number LF zero mode constant [2] replaces the vacuum condensate of the
instant form. The simple structure of the light-front vacuum allows an unambiguous definition of
the partonic content of a hadron.

Light-front wavefunctions are the fundamental process-independent amplitudes which encode
hadron properties in terms of their quark and gluon degrees of freedom, predicting dynamical quan-
tities such as spin correlations, form factors, structure functions, generalized parton distributions,
and exclusive scattering amplitudes. Meson and baryon light-front wavefunctions can be measured
in diffractive di-jet and tri-jet reactions, respectively. One of the most important advantages of the
light-front formalism is that spacelike form factors can be represented as simple overlap integrals
of the LF Fock state wavefunctions ψn and ψn′ with n′ = n; i.e., the Drell-Yan-West formula. This
is in dramatic contrast to the usual instant form result which requires the inclusion of contributions
where the current couples to vacuum processes. Thus knowing the wavefunction of a hadron at
fixed time t is not sufficient to determine the form factors and other properties of the hadron. In
addition, one must also be able to compute the boosted instant form wavefunction, which requires
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solving a complex dynamical problem. In fact, boosted wavefunctions are only known at weak
coupling and even then are more complicated than the product of Melosh or Wigner transforma-
tions of the individual constituent spinors. In contrast, the light-front wavefunctions of a hadron
are independent of the momentum of the hadron, and they are thus boost invariant. The generalized
parton distributions measured in deep inelastic Compton scattering γ∗(q)p→ γ(k)p′ in the handbag
approximation can be written as the overlap of light-front wavefunctions [3].

2. A Single-Variable Light-Front Schrödinger Equation for QCD [4]

A key step in the analysis of an atomic system such as positronium is the introduction of the
spherical coordinates r,θ ,φ which separates the dynamics of Coulomb binding from the kinemat-
ical effects of the quantized orbital angular momentum L. The essential dynamics of the atom
is specified by the radial Schrödinger equation whose eigensolutions ψn,L(r) determine the bound-
state wavefunction and eigenspectrum. Here we show that there is an analogous invariant light-front
coordinate ζ which allows one to separate the essential dynamics of quark and gluon binding from
the kinematical physics of constituent spin and internal orbital angular momentum. The result
is a single-variable light-front Schrödinger equation for QCD which determines the eigenspec-
trum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum.
Conversely, this analysis can be applied to atomic physics, providing an elegant formalism for
relativistic atoms.

The connection between light-front QCD and the description of hadronic modes on AdS space
is physically compelling and phenomenologically successful. To a first approximation light-front
QCD is formally equivalent to an effective gravity theory on AdS5. To prove this, we show that the
LF Hamiltonian equations of motion of QCD lead to an effective LF wave equation for physical
modes φ(ζ ) which encode the hadronic properties. This LF wave equations carry the orbital angu-
lar momentum quantum numbers and are equivalent to the equations of motion which describe the
propagation of spin-J modes on AdS space. This allows us to formally establish a gauge/gravity
correspondence between an effective gravity theory defined on AdS5 and light front QCD at its
asymptotic boundary.

To simplify the discussion we will consider a two-parton hadronic bound state. In the case of
massless constituents the LF Hamiltonian equation of motion of QCD leads to the equation

M 2 =
∫ 1

0
dx
∫ d2k⊥

16π3
k2
⊥

x(1− x)
|ψ(x,k⊥)|2 + interactions

=
∫ 1

0

dx
x(1− x)

∫
d2b⊥ψ

∗(x,b⊥)
(
−∇

2
b⊥`

)
ψ(x,b⊥)+ interactions. (2.1)

The functional dependence for a given Fock state is given in terms of the invariant mass M 2
n =(

∑
n
a=1 kµ

a

)2
= ∑a

k2
⊥a
xa
→ k2

⊥
x(1−x) , the measure of the off-mass shell energy M 2−M 2

n . Similarly in

impact space the relevant variable for a two-parton state is ζ 2 = x(1−x)b2
⊥. Thus, to first approxi-

mation LF dynamics depend only on the boost invariant variable Mn or ζ and hadronic properties
are encoded in the hadronic mode φ(ζ ): ψ(x,k⊥)→ φ(ζ ). We choose the normalization of the LF
mode φ(ζ ) = 〈ζ |φ〉 with 〈φ |φ〉=

∫
dζ |〈ζ |φ〉|2 = 1. Comparing with the LFWF normalization, we
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find the functional relation: |φ |
2

ζ
= 2π

x(1−x) |ψ(x,b⊥)|2, which is the same result found in [5, 6] from
the mapping of transition matrix elements for arbitrary values of the momentum transfer.

We can write the Laplacian operator in circular cylindrical coordinates ζ = (~ζ ,ϕ) with ~ζ =√
x(1− x)b⊥: ∇2 = 1

ζ

d
dζ

(
ζ

d
dζ

)
+ 1

ζ 2
∂ 2

∂ϕ2 , and factor out the angular dependence of the modes in

terms of the SO(2) Casimir representation L2 of orbital angular momentum in the transverse plane:
φ(~ζ ,ϕ)∼ e±iLϕφ(ζ ). We find

M 2 =
∫

dζ φ
∗(ζ )

√
ζ

(
− d2

dζ 2 −
1
ζ

d
dζ

+
L2

ζ 2

)
φ(ζ )√

ζ
+
∫

dζ φ
∗(ζ )U(ζ )φ(ζ )

=
∫

dζ φ
∗(ζ )

(
− d2

dζ 2 −
1−4L2

4ζ 2 +U(ζ )
)

φ(ζ ), (2.2)

where all the complexity of the interaction terms in the QCD Lagrangian is summed up in the
effective potential U(ζ ). The light-front eigenvalue equation HLF |φ〉= M 2|φ〉 is thus a light-front
wave equation for φ (

− d2

dζ 2 −
1−4L2

4ζ 2 +U(ζ )
)

φ(ζ ) = M 2
φ(ζ ), (2.3)

an effective single-variable light-front Schrödinger equation which is relativistic, covariant and
analytically tractable. One can readily generalize the equations to allow for the kinetic energy of
massive quarks [7].

As the simplest example we consider a bag-like model [8] where the partons are free inside
the hadron and the interaction terms will effectively build confinement. The effective potential is
a hard wall: U(ζ ) = 0 if ζ ≤ 1

ΛQCD
and U(ζ ) = ∞ if ζ > 1

ΛQCD
. However, unlike the standard bag

model [8], boundary conditions are imposed on the boost-invariant variable ζ , not on the bag radius
at fixed time. If L2 ≥ 0 the LF Hamiltonian is positive definite 〈φ |HLF |φ〉 ≥ 0 and thus M 2 ≥ 0.
If L2 < 0 the LF Hamiltonian is unbounded from below and the particle “falls towards the center”.
The critical value corresponds to L = 0. The mode spectrum follows from the boundary conditions
φ(ζ = 1/ΛQCD) = 0, and is given in terms of the roots of Bessel functions: M 2

L,k = βL,kΛQCD.
Since in the conformal limit U(ζ )→ 0, Eq. (2.3) is equivalent to an AdS wave equation, the
hard-wall LF model discussed here is equivalent to the hard wall model of Ref. [9]. Likewise a
two-dimensional transverse oscillator with effective potential U(ζ ) ∼ ζ 2 is equivalent to the soft-
wall model of Ref. [10] which reproduce the usual linear Regge trajectories.

3. Light-Front Holography

Our analysis follows from recent developments in light-front QCD [4, 5, 6, 7] which have
been inspired by the AdS/CFT correspondence [11] between string states in anti-de Sitter (AdS)
space and conformal field theories (CFT) in physical space-time. The application of AdS space
and conformal methods to QCD can be motivated from the empirical evidence [12] and theoretical
arguments [13] that the QCD coupling αs(Q2) has an infrared fixed point at low Q2. The AdS/CFT
correspondence has led to insights into the confining dynamics of QCD and the analytic form of
hadronic light-front wavefunctions. As we have shown recently, there is a remarkable mapping
between the description of hadronic modes in AdS space and the Hamiltonian formulation of QCD
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Figure 1: Light-front holography for meson wavefunctions: ψ(x,b⊥) =
√

x(1−x)
2πζ

φ(ζ ). This mapping is
derived from the equality of the LF and AdS formulae for current matrix elements.
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Figure 2: (a) Pion light-front wavefunction ψπ(x,b⊥) for the AdS/QCD soft wall (κ = 0.375 GeV) model.
(b) Holographic prediction the space-like pion form factor: (blue) hard wall (ΛQCD = 0.32 GeV) and (red)
soft wall (κ = 0.375 GeV) models.

in physical space-time quantized on the light-front. This procedure allows string modes Φ(z) in the
AdS holographic variable z to be precisely mapped to the light-front wave functions of hadrons in
physical space-time in terms of a specific light-front variable ζ which measures the separation of
the quark and gluonic constituents within the hadron (see fig. 1). The coordinate ζ also specifies the
light-front kinetic energy and invariant mass of constituents. This mapping was originally obtained
by matching the expression for electromagnetic current matrix elements in AdS space with the
corresponding expression for the current matrix element using light-front theory in physical space
time [5, 6]. More recently we have shown that one obtains the identical holographic mapping using
the matrix elements of the energy-momentum tensor [14], thus providing an important consistency
test and verification of holographic mapping from AdS to physical observables defined on the
light front. The resulting wavefunction [see fig. 2 (a)] displays confinement at large interquark
separation and conformal symmetry at short distances, reproducing dimensional counting rules for
hard exclusive amplitudes. The predictions for the spacelike pion form factor for the hard-wall and
soft-wall models is shown in fig. 2 (b).

The use of the invariant coordinate ζ in light-front QCD allows the separation of the dynamics
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of quark and gluon binding from the kinematics of constituent spin and internal orbital angular
momentum. The result is a single-variable light-front Schrödinger equation which determines the
eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular
momentum. This light-front wave equation serves as a first approximation to QCD and is equivalent
to the equations of motion which describe the propagation of spin-J modes on anti-de Sitter (AdS)
space. Remarkably the AdS equations correspond to the kinetic energy terms of the partons inside
a hadron, whereas the interaction terms build confinement and correspond to the truncation of AdS
space [4]. As in this approximation there are no interactions up to the confining scale, there are no
anomalous dimensions. This may explain the experimental success of power-law scaling in hard
exclusive reactions where there are no indication of the effects of anomalous dimensions. For the
same reason we also expect little effect of anomalous dimensions on the gravity side for J > 2. This
also explains why physical hadrons lying on Regge trajectories with J > 2 are not incompatible with
a string description. In the hard wall model there is a total decoupling of the internal orbital angular
momentum from the total hadronic spin J, and thus the light-front excitation spectrum of hadrons
depend only on the orbital and principal quantum numbers. In the hard-wall holographic model the
dependence is linear: Mn∼ 2n+L. In the soft-wall model the usual Regge behavior is found M 2∼
n + L. One can systematically improve the AdS/QCD approximation by diagonalizing the QCD
LF Hamiltonian on the AdS/QCD basis or by generalizing the variational and other systematic
methods used in chemistry and nuclear physics. The action of the non-diagonal terms in the QCD
interaction Hamiltonian generates the form of the higher Fock state structure of hadronic LFWFs.
We emphasize, that in contrast with the original AdS/CFT correspondence, the large NC limit is not
required to connect light-front QCD to an effective dual gravity approximation.

4. Hadronization at the Amplitude Level

The conversion of quark and gluon partons is usually discussed in terms of on-shell hard-
scattering cross sections convoluted with ad hoc probability distributions. The LF Hamiltonian
formulation of quantum field theory provides a natural formalism to compute hadronization at the
amplitude level. In this case one uses light-front time-ordered perturbation theory for the QCD
light-front Hamiltonian to generate the off-shell quark and gluon T-matrix helicity amplitude using
the LF generalization of the Lippmann-Schwinger formalism:

T LF = HLF
I +HLF

I
1

M 2
Initial−M 2

intermediate + iε
HLF

I + · · · (4.1)

Here M 2
intermediate = ∑

N
i=1 (k2

⊥i +m2
i )/xi is the invariant mass squared of the intermediate state and

HLF
I is the set of interactions of the QCD LF Hamiltonian in the ghost-free light-cone gauge [15].

The T LF -matrix element is evaluated between the out and in eigenstates of HQCD
LF . The event

amplitude generator is illustrated for e+e− → γ∗ → X in fig. 3. The LFWFS of AdS/QCD can
be used as the interpolating amplitudes between the off-shell quark and gluons and the bound-state
hadrons. Specifically, if at any stage a set of color-singlet partons has light-front kinetic energy
∑i k2

⊥i/xi < Λ2
QCD, then one coalesces the virtual partons into a hadron state using the AdS/QCD

LFWFs. This provides a specific scheme for determining the factorization scale which matches
perturbative and nonperturbative physics.
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Figure 3: Illustration of an event amplitude generator for e+e− → γ∗ → X for hadronization processes at
the amplitude level. Capture occurs if ζ 2 = x(1− x)b2

⊥ > 1/Λ2
QCD in the AdS/QCD hard wall model of

confinement; i.e. if M 2 = k2
⊥

x(1−x) < Λ2
QCD.

This scheme has a number of important computational advantages: (a) Since propagation in
LF Hamiltonian theory only proceeds as τ increases, all particles propagate as forward-moving
partons with k+

i ≥ 0. There are thus relatively few contributing τ−ordered diagrams. (b) The com-
puter implementation can be highly efficient: an amplitude of order gn for a given process only
needs to be computed once. (c) Each amplitude can be renormalized using the “alternate denomi-
nator” counterterm method [16], rendering all amplitudes UV finite. (d) The renormalization scale
in a given renormalization scheme can be determined for each skeleton graph even if there are
multiple physical scales. (e) The T LF -matrix computation allows for the effects of initial and final
state interactions of the active and spectator partons. This allows for leading-twist phenomena such
as diffractive DIS, the Sivers spin asymmetry and the breakdown of the PQCD Lam-Tung relation
in Drell-Yan processes. (f) ERBL and DGLAP evolution are naturally incorporated, including the
quenching of DGLAP evolution at large xi where the partons are far off-shell. (g) Color confine-
ment can be incorporated at every stage by limiting the maximum wavelength of the propagating
quark and gluons [13].

5. Conclusions

We have identified an invariant light-front coordinate ζ which allows the separation of the
dynamics of quark and gluon binding from the kinematics of constituent spin and internal or-
bital angular momentum. The result is a single-variable light-front Schrödinger equation for QCD
which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin
and orbital angular momentum. This frame-independent light-front wave equation is equivalent to
the equations of motion which describe the propagation of spin-J modes on anti-de Sitter (AdS)
space [4]. Light-Front Holography is one of the most remarkable features of AdS/CFT. It allows
one to project the functional dependence of the wavefunction Φ(z) computed in the AdS fifth di-
mension to the hadronic frame-independent light-front wavefunction ψ(xi,b⊥i) in 3 + 1 physical
space-time. The variable z maps to ζ (xi,b⊥i). To prove this, we have shown that there exists a
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correspondence between the matrix elements of the energy-momentum tensor of the fundamental
hadronic constituents in QCD with the transition amplitudes describing the interaction of string
modes in anti-de Sitter space with an external graviton field which propagates in the AdS inte-
rior [14]. The agreement of the results for both electromagnetic and gravitational hadronic tran-
sition amplitudes provides an important consistency test and verification of holographic mapping
from AdS to physical observables defined on the light-front. The transverse coordinate ζ is related
to the invariant mass squared of the constituents in the LFWF and its off-shellness in the light-front
kinetic energy, and it is thus the natural variable to characterize the hadronic wavefunction.

It is interesting to note that the form of the nonperturbative pion distribution amplitude φπ(x)
obtained from integrating the qq valence LFWF ψ(x,k⊥) over k⊥, has a quite different x-behavior
than the asymptotic distribution amplitude predicted from the PQCD evolution [17] of the pion
distribution amplitude. The AdS prediction φπ(x) =

√
3 fπ

√
x(1− x) has a broader distribution than

expected from solving the ERBL evolution equation in perturbative QCD. This observation appears
to be consistent with the results of the Fermilab diffractive dijet experiment [18], the moments
obtained from lattice QCD [7] and pion form factor data [19].

Nonzero quark masses are naturally incorporated into the AdS predictions [7] by including
them explicitly in the LF kinetic energy ∑i(k2

⊥i +m2
i )/xi. Given the nonpertubative LFWFs one

can predict many interesting phenomenological quantities such as heavy quark decays, generalized
parton distributions and parton structure functions. The AdS/QCD model is semiclassical and
thus only predicts the lowest valence Fock state structure of the hadron LFWF. In principle, the
model can be systematically improved by diagonalizing the full QCD light-front Hamiltonian on
the AdS/QCD basis.

Color confinement and its implementation in AdS/QCD implies a maximal wavelength for
confined quarks and gluons and thus a finite IR fixed point for the QCD coupling [13]. This
strengthens our understanding of the narrow widths of the J/ψ and ϒ. A new perspective on
the nature of quark and gluon condensates in quantum chromodynamics is presented in [20]: the
spatial support of QCD condensates is restricted to the interior of hadrons, since they arise due to
the interactions of confined quarks and gluons. Chiral symmetry is thus broken in a limited domain
of size 1/mπ , in analogy to the limited physical extent of superconductor phases. This picture
explains recent results which find no significant signal for the vacuum gluon condensate.

We also note the importance of distinguishing between static observables such as the prob-
ability distributions computed from the square of the light-front wavefunctions versus dynamical
observables such as the structure functions and the leading twist single-spin asymmetries measured
in deep inelastic scattering which include the effects of final state interactions. This distinction is
summarized in fig. 4.
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• Square of Target LFWFs                 Modified by Rescattering: ISI & FSI

• No Wilson Line                             Contains Wilson Line, Phases

• Probability Distributions                 No Probabilistic Interpretation

• Process-Independent                      Process-Dependent - From Collision

• T-even Observables                        T-Odd (Sivers, Boer-Mulders, etc.)

• No Shadowing,  Anti-Shadowing      Shadowing,  Anti-Shadowing, Saturation

• Sum Rules: Momentum and Jz               Not Proven

• DGLAP Evolution; mod. at large x   DGLAP Evolution

• No Diffractive DIS                         Hard Pomeron and Odderon: DDIS

Static                               Dynamic
General remarks about orbital angular mo-
mentum

Ψn(xi,!k⊥i, λi)

∑n
i=1(xi

!R⊥+!b⊥i) = !R⊥

xi
!R⊥+!b⊥i

∑n
i
!b⊥i = !0⊥

∑n
i xi = 1

2

Figure 4: Dynamic versus static observables.
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