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We discuss the properties of two different types of infraredsolutions of Landau gauge Yang-Mills

theory and argue for one of these (the ’scaling solution’). We furthermore clarify the status of

previously obtained results from DSEs on a four-torus. Including quarks we discuss a relation

between confinement and dynamical chiral symmetry breakingbased on the scaling solution of

Yang-Mills theory. An infrared singularity in the quark-gluon vertex allows for a solution of the

UA(1) problem along the lines of a mechanism suggested by Kogutand Susskind long ago.
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Infrared behavior of QCD from the Dyson-Schwinger formalism

1. Introduction

There are (at least) two reasons why the Green’s functions ofgauge fixed QCD are interesting
objects to study. On the one hand they are related to fundamental properties of the theory like
confinement and dynamical chiral symmetry breaking. On the other hand they serve as input for
calculations of observable quantities like dynamical properties of bound states, as determined e.g.
in the framework of Bethe-Salpeter and Faddeev type of equations.

In this talk we are mainly concerned with the first issue. In the framework of covariantly
gauge fixed QCD, Kugo and Ojima [1] have developed a confinement scenario that rests on well-
defined charges related to unbroken global gauge symmetries. In this framework BRST-symmetry
has been used to identify the positive definite spaceHphys of physical states within the total state
spaceV of QCD. An unbroken global gauge symmetry is then crucial to show that the states in
Hphys contributing to the physical S-matrix of QCD are indeed colorless. They also argued that
this setup guarantees the disappearance of the ’behind-the-moon’ problem, i.e. a colorless bound
state with colored constituents cannot be delocalized intocolored lumps [1].

The well-definedness of global gauge symmetry has been related to the infrared behavior of
the propagators of Landau gauge QCD in [1]: Global gauge symmetry is unbroken if in the infrared
the ghost propagator is more divergent and the gluon propagator less divergent than a simple pole.
For the gluon propagator this means that it is probably at most constant or even vanishing in the
infrared. In terms of the dressing functionsG(p2) andZ(p2) of the ghost and gluon propagators

DG(p) = −G(p2)

p2 , Dµν(p) =

(

δµν −
pµ pν

p2

)

D(p2) =

(

δµν −
pµ pν

p2

)

Z(p2)

p2 , (1.1)

and in terms of a power-law expansion this condition reads

Z(p2) ∼ (p2)−κA; G(p2) ∼ (p2)−κC (1.2)

with exponentsκA ≤−1 andκC > 0.
Nonperturbative information on the ghost and gluon propagators can be obtained by Dyson-

Schwinger equations (DSEs) [2] or functional renormalization group equations (FRGs) [3] in the
continuum field theory, or from lattice QCD at finite volume and lattice spacing. In the following
we first discuss the two possible types of numerical solutions (named ’scaling’ and ’decoupling’) in
the infinite volume/continuum limit from DSEs. Then we report on various comparisons between
solutions from DSEs on a torus and results from lattice QCD insection 3. In the last section we
shortly discuss a particular pattern of dynamical chiral symmetry breaking related to the scaling
type of behavior of the Yang-Mills sector of QCD.

2. Infrared Yang-Mills theory from DSEs

The infrared behavior of the one-particle irreducible (1PI) Green’s functions of Yang-Mills
theory have been investigated in a number of works. The basicrelationκA = −2κC between the
dressing functions (1.2) of the gluon and ghost propagator has been extracted in [4, 5] from DSEs.
Corresponding results from FRGs have been obtained in [6]. These findings have been generalized
to Green’s functions with an arbitrary number of legs in [7].The analysis rests upon a separation
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Infrared behavior of QCD from the Dyson-Schwinger formalism

of scales, which takes place in the deep infrared momentum region. Provided there is only one
external momentump << ΛQCD much smaller thanΛQCD a self-consistent infrared asymptotic
solution of the whole tower of Dyson-Schwinger equations for these functions is given by

Γn,m(p2) ∼ (p2)(n−m)κ . (2.1)

Here Γn,m(p2) denotes the dressing function of the infrared leading tensor structure of the 1PI-
Green’s function with 2n external ghost legs andm external gluon legs. This solution agrees with
the Slavnov-Taylor identities and is the unique scaling solution in the infrared [8]. Here ’scal-
ing’ denotes the fact thatall Green’s functions obey nontrivial power laws in the infrared with an
anomalous dimensionκ > 0 [9]. For the ghost and gluon dressing functions (1.2) this scaling type
of solution yields the abovementioned power lawκ = κC = −κA/2.

The absence of scaling implies the decoupling of (some) degrees of freedom. A solution of
this type has been discussed e.g. in [10, 11, 12] and is given by κC = 0 andκA = −1. We refer to
this type of solution as the ’decoupling solution’.

Both types of infrared behavior can also be obtained as numerical solutions for the coupled
systems of ghost and gluon DSEs. In [5, 11] the infrared boundary conditionG(0), i.e. the value
of the ghost dressing function at zero momentum, has been identified as a parameter that allows
to switch between these two types. Clearly,G(0)−1 = 0 corresponds to an infrared diverging
ghost dressing function implementing the scaling solution, whereasG(0) = const. produces an
infrared finite ghost by construction. The gluon propagatoris then either massive in the sense
that D(0) = limp2→0 Z(p2)/p2 = const. for decoupling, or has the power like behavior (1.2) with
κ = κC = (93−

√
1201)/98≈ 0.595353 [5] in the case of scaling. The corresponding numerical

solutions of the coupled ghost and gluon DSEs have been determined in [13] and are shown in
fig. 1.

The decoupling type of solution contains an arbitrary and unfixed parameter: the value of the
ghost at zero momentum and correspondingly the finite valueD(0) of the gluon. If the gluon were a
massive, physical particle this value could be fixed from experiment. However, even for decoupling
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Figure 1: Numerical solutions for the ghost and gluon dressing function with two different boundary con-
ditions G(0). The results displayed here are obtained within the truncation scheme introduced in [13].
Differences to the scheme defined in [14] are, however, only very small and would not be visible in the plots.
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Infrared behavior of QCD from the Dyson-Schwinger formalism

the gluon isnot massive in this sense [13] and it is therefore hard to see howD(0) could be fixed
unambiguously. This problem is absent for the scaling type of solutions.

Although both types of solutions can be obtained from the DSEs, their status is certainly
different. From the discussion in the introduction we note that only the scaling type of solutions
agrees with the Kugo-Ojima scenario in the sense that it corresponds to an unbroken global gauge
symmetry. On the other hand, a broken global gauge symmetry is a clear signal for a system in the
Higgs phase. We are therefore led to the conclusion that the scaling solution represents the confined
phase of Yang-Mills theory, whereas the decoupling type of solutions represents something like a
Higgs phase. These arguments and additional ones related tothe breaking of BRST symmetry in
the decoupling case are discussed in detail in [13].

3. DSEs on a torus: finite volume effects

In general there are some caveats in comparing results from the continuum Dyson-Schwinger
approach to those of lattice calculations (see [15] and refs. therein). The quantitative aspects of
the continuum solutions depend on the details of the chosen truncation scheme, whereas the lattice
calculations areab initio. Gauge fixing is different in the two approaches and the effects of Gribov
copies have to be taken into account. Furthermore, lattice calculations are carried out on a compact
manifold, and therefore one has to deal with effects due to finite volume and lattice spacing.
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Figure 2: Numerical solutions for the ghost and gluon dressing function in the continuum and on tori with
different volumes. In the upper panel we display solutions of the decoupling type, whereas on the lower
panel scaling solutions are shown.
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Infrared behavior of QCD from the Dyson-Schwinger formalism

To quantify the ’plain’ volume effects (i.e. those not connected to the gauge fixing procedure)
we formulated the DSEs on a torus without changing the truncation scheme. Scaling solutions on
a torus have been found in [16], whereas solutions of decoupling type have been produced in [17].

In general, one would expect to see differences to the corresponding continuum solutions for
small volumes, which disappear continuously when the volume is chosen larger and larger. This
is indeed the case as shown in fig. 2. For both types of solutions we obtain a smooth infinite
volume/continuum limit as the volumes are increased1.

It is apparent from the results of fig. 2 that volumes ofV = (15fm)4 and more are necessary to
observe signals of the infinite volume/continuum behavior of the dressing functions also on a torus.
As discussed in detail in [16] the technical reason for this is that one needs a range of momentap
with π

L << p<< ΛQCD to observe this behavior; these three scales need to be widely separated. In
addition it is worth noting that the infrared behavior of theGreen’s functions does not reflect dy-
namical properties of the theory. These play a role at momenta of the order of or larger thanΛQCD

and are not plagued by volume effects of this magnitude. Scaling or decoupling on the other hand
are phenomena that occur due to the absence of dynamics in thedeep infrared momentum region.
They are characteristic of the global properties of the theory as e.g. the conservation or breaking
of global gauge symmetries. Scaling is also related to the dominance of the Faddeev-Popov de-
terminant represented by the ghost degrees of freedom in theinfrared. This dominance allows for
the formulation of an infrared effective theory where the Yang-Mills part of the Lagrangian can be
neglected [19].

4. Dynamical chiral symmetry breaking

In the quark Dyson-Schwinger equation the central object responsible for dynamical chiral
symmetry breaking is the quark-gluon vertex as the sole carrier of quark-gluon interactions. Based
on the scaling type of infrared solutions (2.1), one can derive the analytical infrared behavior of
this vertex [20]. To this end one has to carefully distinguish the cases of broken or unbroken
chiral symmetry. Whereas in the broken case the full quark-gluon vertexΓµ can consist of up to
twelve linearly independent Dirac tensors, these reduce toa maximum of six when chiral symmetry
is realized in the Wigner-Weyl mode. Correspondingly, a broken symmetry induces two tensor
structures in the quark propagator, whereas only one is leftwhen chiral symmetry is restored. In a
similar way, chiral symmetry breaking reflects itself in every Green’s function with quark content.

The presence or absence of the additional tensor structuresturns out to be crucial for the
infrared behavior of the quark-gluon vertex. When chiral symmetry is broken (either explicitly
or dynamically with a valence quark massm> ΛQCD) one obtains a self-consistent solution of the
vertex-DSE which behaves like [20]

λ DχSB∼ (p2)−1/2−κ . (4.1)

Hereλ denotes generically any dressing of the twelve tensor structures. If, however, chiral sym-
metry is unbroken one obtains the weaker singularity

λ χS∼ (p2)−κ . (4.2)
1A corresponding comparison in refs. [17, 18] is misleading since in these works decoupling solutions on a torus

have been compared with the scaling solution in the continuum.
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Infrared behavior of QCD from the Dyson-Schwinger formalism

As a consequence the running coupling from the quark-gluon vertex either is infrared divergent
(’infrared slavery’) or develops a fixed point:

αqg(p2) = αµ [λ (p2)]2 [Zf (p2)]2Z(p2) ∼







1
p2

constDχSB
qg

Nc
: DχSB

constχS
qg

Nc
: χS

(4.3)

(Here we use that the quark propagator is constant in the infrared, i.e.Zf (p2) ∼ const[21].) Note
that in all couplings the irrational anomalous dimensions (∼ κ) of the individual dressing functions
cancel in the RG-invariant products.

Besides the divergence (4.2) of the quark-gluon vertex withall momenta going to zero there
also exists a soft collinear-like divergence dependent only upon the external gluon momentumk2

[20]:
Γ ∼

(

k2)−κ−1/2
(4.4)

This additional divergence has two interesting consequences. First, one can analyze the behavior
of the quark four-point functionH(k2) which includes the (static) quark potential. With (4.1) and
(4.2), one obtainsH(k2) ∼ 1/k4 in the Nambu-Goldstone andH(k2) ∼ 1/k2 in the Wigner-Weyl
realization of chiral symmetry. This leads to a quark-antiquark potential of

V(r) =
1

(2π)3

∫

d3k eikr H(k2) ∼
{

|r| : DχSB
1
|r | : χS

(4.5)

which establishes a link between dynamical chiral symmetrybreaking and confinement [20].
The second consequence concerns theUA(1)-problem. A confinement driven mechanism for

the generation of the topological mass of theη ′ in the chiral limit has been suggested by Kogut and
Susskind many years ago [22]. It involves the calculation ofa certain type of diagram (’diamond
diagram’), which generates such a mass in the presence of an infrared divergent gluon propagator
D(k) ∼ 1/k4 for k2 → 0. Today we have excellent evidence that the gluon propagator cannot be
that singular. However, there is the above-mentioned singularity in the quark-gluon vertex. Indeed,
the combination of a gluon propagator and two dressed vertices appearing in the diamond diagram
gives precisely a singularity of necessary strength:

Γ(k2)
Z(k2)

k2 Γ(k2)
k2→0−→ (k2)−1/2−κ (k2)2κ

k2 (k2)−1/2−κ ∼ 1/k4 (4.6)

One then obtains the massesmη ,mη ′ and the singlet-octet mixing angleθ of [23]

θ = −23.2, mη = 479MeV, mη ′ = 906MeV (4.7)

in the chiral limit. These values demonstrate that the Kogut-Susskind mechanism works in princi-
ple. Via the Witten-Veneziano relation one obtains the topological susceptibilityχ2 of

χ2 = (169 MeV)4 , (4.8)

in qualitative agreement with lattice results [24].
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