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We show that the gauge invariant treatment of the Schwibyspen equations of QCD leads to an
infrared finite gluon propagator, signaling the dynamicaheration of an effective gluon mass,
and a non-enhanced ghost propagator, in qualitative agmamith recent lattice data. The trun-
cation scheme employed is based on the synergy betweemtttetpchnique and the background
field method. One of its most powerful features is that thedvarsality of the gluon self-energy
is manifestly preserved, exactly as dictated by the BRSTnsgtry of the theory. We then ex-

plain, for the first time in the literature, how to construcinAperturbatively a renormalization

group invariant quantity out of the conventional gluon @gator. This newly constructed quan-
tity serves as the natural starting point for defining a nertygbative effective charge for QCD,

which constitutes, in all respects, the generalization moa-Abelian context of the universal

QED effective charge. This strong effective charge displagymptotic freedom in the ultravio-

let, while in the low-energy regime it freezes at a finite ealgiving rise to an infrared fixed point

for QCD. Some possible pitfalls related to the extractioswth an effective charge from infrared
finite gluon propagators, such as those found on the latiieehriefly discussed.
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It has been known for a long time that even though the gluon is masslesdeataheaf the fun-
damental Lagrangian, and remains massless to all order in perturbatiopn theaon-perturbative
QCD dynamics generate an effective, momentum-dependent mass, witfemniingfthe local
SU(3). invariance, which remains intact [1]. The existence of this mass is disstsr studying
the Schwinger-Dyson equations (SDEs) of QCD, in a gauge-invaniantework known as the
pinch technique (PT) [1, 2]. To obtain massive solutions it is necessangltale longitudinally-
coupled massless scalars in the Green’s functions, which play a role likth&oldstone excita-
tions, but do not signal any sort of breakdown of local gauge symimetlrigh is preserved. Like
standard Goldstone bosons these massless scalars do not appetilyerphie S-matrix; however,
they play a crucial role in confinement, furnishing the required long raogential.

An effective low-energy field theory for describing the gluon mass is theygd non-linear
sigma model known as “massive gauge-invariant Yang-Mills” [3], withrdaagian density

Lvm = %wa—szr (A —g U(8)a,U1(0)]°, (1)
whereA, = %Za)\aAﬁ, the A, are the SU(3) generators (with Aty = 28,), and theN x N
unitary matrixU(6) = exp[i%}\aea] describes the scalar field. Note that%yywm is locally
gauge-invariant under the combined gauge transformation

A, =VANVT—gtlgVvvt  U'=U()=VU(e), (2)

for any group matri¥/ = exp[i %/\awa(x)] , Wwherew?(x) are the group parameters. One might think
that, by employing (2), the field&, can always be transformed to zero, but this is not so ifghe
contain vortices. To use th&yym in (1), one solves the equations of motion fbin terms of the
gauge potentials and substitutes the result in the equations for the gaugigbo@ne then finds
the Goldstone-like massless modes mentioned above. This model admits vartensg3], with
a long-range pure gauge term in their potentials, which endows them witlokgigal quantum
number corresponding to the center of the gauge gréypdr SU(N)], and is, in turn, responsible
for quark confinement and gluon screening. Specifically, center esrtitthickness- m~1, where
mis the induced mass of the gluon, form a condensate because their gpieopyit size) is larger
than their action. This condensation furnishes an area law to the funddnmegmésentation Wilson
loop, thus confining quarks [1, 3].

Of course%uywm is not renormalizable, and breaks down in the ultraviolet. This breakdown
simply reflects the fact that the gluon mamsén (1) is assumed to be constant, while the solutions
of the SDEs reveal that the mass is momentum-dependent, vanishing atdditje Specifi-
cally, when studying the SDE for the gluon propagafxig?), one looks for infrared finite solu-
tions, i.e. withA=1(0) > 0. Such solutions may be fitted by “massive” propagators of the form
A~Y(?) = g% +mP(g?), wheren?(g?) is not “hard”, but depends non-trivially on the momentum
transferg®. When the renormalization-group logarithms are properly taken into atootiie SDE
analysis, one obtains, in addition, the non-perturbative generalizatiafgdj, the QCD running
coupling (effective charge). The presencaw{g?) in the argument ofr(g?) tames the Landau
singularity associated with the perturbatf@déunction, and the resulting effective charge is asymp-
totically free in the ultraviolet , “freezing” at a finite value in the infrared.



Infrared finite effective charge of QCD J. Papavassiliou

The general picture described above has received spectacufaimadion from a plethora of
lattice studies, spanning a period of several years: the gluon propagatbes indeed a finite (non-
vanishing) value in the deep infrared, as predicted by Cornwall. Thierattaracteristic behavior
was already seen in early studies [4], and has been firmly establistedlyagsing large-volume
lattices, for bothSU(2) [5] and SU(3) [6] pure Yang-Mills (no quarks included).

In this talk we will present recent results from a gauge-invariant stdidigeocoupled gluon-
ghost system of SDEs [7], yielding an infrared finite gluon propagatdraadivergent (but non-
enhanced) ghost propagator, in qualitative agreement with recent kddtiad5, 6]; this behavior
has also been confirmed within the Gribov-Zwanziger formalism [8]. As thestitiggests, we will
eventually focus on the issue of the infrared finite QCD effective charge

Obtaining an infrared finite result for the gluon self-energy from S#out violating the
underlying local gauge symmetry, is far from trivial, and hinges cruciallpe’s ability to devise
a self-consistent truncation scheme that would select a tractable and,satntte timephysically
meaningfulsubset of these equations. Specifically, while in QED the Green’s fuisctiatisfy
naive Ward Identities (WIs), in QCD they satisfy complicated Slavnov-Taigentities (STIs),
which involve various composite ghost operators. To see how this comglitegeruncation pro-
cedure of the SDEs, consider the STI of the gluon self-energy

qunuv(Q) =0. (3)

Eq. (3) is without a doubt the most fundamental statement at the level ehGriunctions that
one can obtain from the BRST symmetry; it affirms the transversality of thenglalf-energy and
is valid both perturbatively to all orders as well as non-perturbativehe problem is that in the
SDE governindl,y(q) enter higher order Green'’s functions, namely the fully-dressed fuadtal
vertices of the theory, which satisfy complicated STls. Thus, whereaBihte validity of Eq. (3)
can be easily seen at the level of the SDE, simply becatig (p, p+d) = e[S (p+0a) —S*(p)],
in QCD proving Eq. (3) is very difficult, and requires the conspiracylidlid vertices appearing in
the SDE. Truncating the SDE naively usually amounts to leaving out somes# teetices, and,
as a result, Eq. (3) is compromised. Instead, the gauge-invariant timmsaheme [9], based on
the PT [1, 2] and its correspondence with the background field methdd Y BFO] maintains the
validity of Eq.(3) at every level of approximation.

The gluon propagator in the covariant gauges has the idym(q) = Puv(q)A(qz) + E% ,

whereé denotes the gauge-fixing parametey, @) = guv — quq\,/q2 is the usual transverse pro-
jector, and, finallyA=1(q?) = g?+iM(qg?), with My, (q) = Pyy () M(g?) the gluon self-energy. The
full ghost propagatob(p?) and its self-energy.(p?) are related byD ~1(p?) = p? —iL(p?). In
the case of pure (quarkless) QCD, the new SD series [9] for the ghabglzost propagators reads
(see also Fig. 1)

84 @)Puy(e) = LD D@,

[1+G(g?)]?
iD~(p?) = p?+iA /kF“Auv(k)lF“(p, K)D(p+Kk),
iAus(6) = [ HEBD(k+ Q)87 () Hay (k.0). @
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Figure 1. The PT-BFM gluon-ghost system. The circles attached to xkermal gluons denote that, from
the point of view of Feynman rules, they are treated as backgt fields.

whereA = g?Ca, with Ca the Casimir eigenvalue of the adjoint representat@nF N for SU(N)],
and f, = p%(2m)~9 [d%, with d = 4 — ¢ the dimension of space-timé,, is the standard (asym-
metric) gluon-ghost vertex at tree-level, afitl the fully-dressed one(q?) is theg,, component
of the auxiliary two-point function\,,(q), and the functiorH,, is defined diagrammatically in
Fig. 1. Hgy is related to the full gluon-ghost vertex b§fHgy (p,r,q) = —illy(p,r,q); at tree-level,
Hc(,c\),) =iggv. When evaluating the diagranig;) we use the BFM Feynman rules [10]; the BFM
fully dressed three-gluon and gluon-ghost vertices are denotfqlpy andIIN'“.

Notice a point of paramount importance: due to the Abelian all-order Widlleae two full
vertices satisfy (for alf), namely

T yap = i85 (k+0) —id 5(K),  q“IFy =iD "} (k+q) =D (K), (5)

one can demonstrate thgit[(a1) + (a2)] v = 0 andg”[(az) + (as)]uv = 0 [11]. Thus, unlike other
treatments in the literature, within this formalism the transversality of the gluoresehyy, i.e.
Eq. (3), is preserved at every step, in absolute compliance with the BRBMetry.

Next, following standard techniques, we exprﬁ%ﬁ and Iﬁ, as a function of the gluon and
ghost self-energy, respectively, in such a way as to automatically stitestyrucial Wis of Eq. (5);
failure to satisfy these WIs would invariably compromise the transversalityeohitiswer. The
Ansatz we will use is

P +i3‘2’ Map(k+a) —MapR)], Fu=Ty— i‘;g L(k+q) — LK) ;
its essential feature, other than satisfying the aforementioned Wis, isaberme of massless, lon-
gitudinally coupled pole terms, which are instrumental for obtaiging(0) # 0 [12]. These poles
are not kinematic but dynamical, corresponding to a composite (boundl<Gtatistone excitation,
enforcing the local gauge invariance. For the conventional ghostigladex I',, appearing in
the second SDE of (4) we will use its tree-level expressien,Ilr, — ', = —py; this is perfectly
legitimate, since in this formalism the two ghost verticEs, dnd ﬂ, are different. Finally, for
Hgv We use its tree-level valuét((;c\);).

In Fig.2, we show the numerical result fatg?) renormalized apt = Mp = 4.5GeV, and the
comparison with the corresponding lattice data of Ref.[6]. In the rightlpzfrfeig.2, we present
the dressing function for the ghost propagator, renormalized at the gaimte While the infrared
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behavior of the ghost dressing function is in qualitative agreement with tieeldata (no power-
law enhancement [13]), there is a significant quantitative discrepamase(than a factor of two),
mainly due to the standard approximatibp + —p,,, motivated by the ultraviolet finiteness bf)l
in the Landau gauge. A more sophisticated treatment of this vertex, evenletd¢hof perturbation
theory, should reduce this difference significantly.

p=5.7 L=80 |
—— SDE solution 13
p=4.5GeV

AP

Ghost dressing function
SDE solution p=M,

1E-3 0,01 0,1 1 10 100 1000 0,01 0,1 1 10 100 1000

qIGeV’] pGeV’]
Figure 2: Left Panel:The numerical solution for the gluon propagétmm the SDE (black continuous line)
compared to the lattice data of Ref.[6]. Right panel:Thesgldoessing functiop?D(p?) obtained from the
SDE. In the insert we show the lattice data for the same gyanti

Let us now turn to the QCD effective charge. There are two main issidsovf to define it
consistently at the level of perturbation theory: specifically, which ggajgtermine the running,
and (ii) how to extend the (whatever) definition one reaches in (i) into thepeoirbative regime.

Point (i) has been addressed exhaustively in the literature [14]: th®tissthat in the context
of the PT one may replicate to all-orders in perturbation theory the prototy@ed@astruction of
an effective charge. To fix the ideas, the PT one-loop gluon selfygmeads

AYeP) = o [1+ be?In (f;)} , ©)

whereb = 11C, /4817 is the first coefficient of the QCB-function. Due to the Abelian WIs satis-
fied by the PT effective Green’s functions, the new propagator-lilemti[lyﬁ*l(qz) absorbs all the
RG-logs, exactly as happens in QED with the photon self-energy. Hgatlyg sinceZ andZa, the
renormalization constants of the gauge-coupling and the effectiverseifpg respectively, satisfy
the QED relatiorZy = 2;1/2, the productl(g?) = g?A(¢?) forms a RG-invarianti{-independent)
quantity [1]; for large momente?,

N 2( 2
die?) = &) ™

whereg?(g?) is the RG-invariant effective charge of QCD,

2( 2) . 92 o 1
99 = T b@in(q2/u?) ~ bin(2/A?)°

Let us now come to point (ii): assuming that one has non-perturbativamiatmn about the in-
frared behavior of the conventional gluon propagattg?), how should one extract an effective

(8)
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Figure 3: Left panel: The solution of SDE renormalizediat= My, = 4.5GeV (continuous blue curve) and
U =Mz =91GeV (red line+square curve). Right Panel: The correspgréT-BFMA(g?) obtained as the
convolution ofA(g?) and the functiorg?(u?)/[1+ G(¢?)]2.

charge, which, perturbatively, will go over to Eqg. (8)? To accomplish timi@ must use an addi-
tional field-theoretic ingredient: the conventioddly?) and the PT-BFMA(g?) are related by the
formal all-order relation [15]

2/\
A(G?) = [1+G(c?)]“A(e?). ©)
Note that theG(g?) already appears in Eq. (4) and Fig.1. With our approximations its SDE reads

_ 3/ [2+ o } A(K)D(K+q). (10)

First of all, it is easy to verify that at lowest order t6ég?) obtained from Eq. (10) restores the

B function coefficient in front of ultraviolet logarithm. In that limitd G(g?) = 1+ 44822 In(q?/u?)

andA(q?) =q [1+ 123%22 In(qz/uz)}. Then using Eq. (9) we recover tiel(q?) of Eq. (6),
as we should. Then, non-perturbatively, one substitutes into Eq. (@(tifé andA(g?) obtained
from solving the system in Eq. (4), to obtaﬁqu). This latter quantity is the non-perturbative gen-
eralization of Eq. (6); for the same reasons explained above, when multiplig? it should form
an RG-invariant quantity, e.g. the non-perturbative generalizati(ﬁ(\qﬁﬁ. In Fig.3 we present the
combined result of the above ste;ﬁ(:qz) is obtained from two different sets of solutions of the
system Eq. (4), one renormalizedat My = 4.5GeV and one gt = Mz = 91 GeV. Ideally the
two curves ofdA(qZ) should be identical; even though this does not happen, due to the approxima
tions employed when solving the system of Eq. (4), the two curves are ¢hidg, indicating that
d(q ) is to a very good approximation an RG-invariant quantity, as it should.

We are now in the position to define the non-perturbative QCD effectiaegelfrom the RG-
invariant quantitydA(qZ). Of course, given thatﬂA(qz) reaches a finite value in the deep infrared,
it would be completely absurd to define the effective charge by forcimg dactor of J/g?; such
a procedure would furnish a completely unphysical strong QCD coupiggely one that would
vanish in the deep infrared(!) where QCD is supposed to be stronghjiexbu
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The correct thing to do is to factor out a “massive”
] T i aiecivecrarge | PrOPAgator, i.e. wite

T2 7 (q)
d(g) = P+me(R) (11)
Of course, as we have emphasized,(q?) it-
self is running, which must also be taken into
account in a more sophisticated treatment. For
the purposes of this talk, however, we assume
thatn?(g?) is constantm?(g?) = n?(0), and use
€3 oot o1 1w w0 10 for mO) the value of 500MeV favored by phe-
q1GeV] nomenology [16]. Thex(¢?) obtained is shown
Figure 4: The QCD effective charge, in Fig.(4); as announced, at low energies freezes

a(o?) =g%(q?)/4m, extracted from Fig.3 by to a finite value, indicating the appearance of an
factoring out a gluon mass of m(0)=500 MeV. infrared fixed point of QCD.
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