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We investigate the local linear stability analysis of rotating jets under the thick flux-tube 
approximation. The magnetic field is chosen so as to have toroidal and poloidal components 
contributing to the internal twist of the flux-tube. We obtained the dispersion relation for 
structures of the binormal helices. We also did numerical solutions of the dispersion relation. In 
the smaller m  modes, the stabilizing effect of the rigid rotation is remarkable, since rotation 
velocities of the higher than the Alfven speed fully stabilize the flow in many cases.  However, 
it is clearly seen that the higher m  modes are generally more stable. 
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1. Introduction 

Today, collimated MHD outflows are analytically investigated in two different approaches 
(Vlahakis & Tsinganos, 1998): 1) RSSM, that, is the radially self-similar models, the prototype 
of which is the Blandford & Payne (1982) model and 2) Sauty & Tsinganos (1994) model 
which is also known as the MSSM – meridionally self-similar model. Solar/stellar winds may 
be regarded as the evolved jets after the sun/stars lose angular momentum (ST94, STT99, 
STT02). But, the numerical simulations carried out by Tsinganos & Bogovalov (2002) and Matt 
et al. (2003) showed that magnetocentrifugally collimated outflows from a rotating celestial 
object or Keplerian accretion discs contain rather less mass and magnetic flux than the 
surrounding winds. The same conclusion is reached in ST94 and STT02. ST94 claims that the 
greater part of the mass loss rate comes from the disc. However, observations points to the 
contrary to these studies’ predictions, i.e., collimated outflows bear higher fluxes. To get out of 
this dilemma, ST94, Koide et al. (1998), STT02, and Tsinganos & Bogovalov (2002) proposed 
that the jets may be regarded as a two component system: an outflow coming from the central 
object and a disk wind. Hartigan et al (1995) showed that the jets have shown two velocity 
components, one of which (LVC) has a velocity range of 10 – 50 km/s and the other (HCV) has 
a radial velocity of several hundred km/s. Kwan & Tademaru (1995) proposed that LVC is the 
disc wind enveloping the jet and this proposition was confirmed by Bacciotti et al. (2002) with 
their study on DG Tau jet the data of which was taken by HST/STI.  The kinematics of the jet 
revealed an onion like shape with HVC lying close to the axis and LVC surrounding it.  

The above mentioned two component jets are also revealed by time dependent simulations 
of jets emanating from black holes and stars (e.g. Kudoh et al., 1998, Koide et al., 1998). Inner 
plasma of the BH is compressed and the pressure as an outward driving force develops. 
Enveloping wind is driven out centrifugally and collimated by the gradient of the azimuthal 
component of the magnetic field. But, the double jet component simulations and the analytical 
solutions enjoy a partial success, that is, while the former can give an account to dense core jets, 
the latter can better explain the hollow jets. The common conclusion is reached by both the 
models on the flow stability, that is the plasma is more stable at the inner flow than the 
Keplerian outer part of the hollow jets (Hanasz et al., 2000; Kudoh et al., 2002).  

Hanasz et al (2000) showed that a local analysis on the thin flux tube is more stable to the 
magnetorotational instability than the enveloping jet originating from the jet. They also showed 
that in some cases rotation stabilizes the disc completely.  

Now, what may be called our contribution to this field may be outlined as below. Our 
analysis is partly, not wholly, an extension of the study by Hanasz et al. (2000), wherein  the 
linear stability of rotating jets confined by a toroidal magnetic field is analyzed by using thin 
flux tube approximation. They find that if the azimuthal velocity is of the order of or higher than 
the Alfven azimuthal speed, the rigidly rotating part of the jet interior can be completely 
stabilized, while the strong shearing instability operates in the transition layer between the 
rotating jet interior and the external medium. This can explain the limb-brightening effect 
observed in several jets. However, it is still possible to find jet equilibria that are stable all 
across the jet, even in the presence of differential rotation. 

In this study to examine the stability problem of the rotating jets we have used thick flux-
tube approximation because we considered curvature and torsion effects and twist angle. The 
magnetic field is chosen so as to have toroidal and poloidal components contributing to the 
internal twist of the flux-tube. The plan of the paper is as follows. Section 2 equations of flux 
tube dynamics are considered. In section 3 fundamental equations for the linear analysis of the 
stability are addressed. In section 4 numerical solutions of the dimensionless dispersion relation 
are given. Finally, in section 5 we mentioned future studies. 
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2. Equations of flux tube dynamics 

We use Ricca’s Riemann geometrical model for the twisted flux tube (Ricca 2005). For the 
sake of simplicity we consider a cylindrical, nonrelativistic jet in cylindrical coordinates 

( ), ,R zφ  with a poloidal and toroidal magnetic field, ( )( )0, , ,0p B r sθ θ =  B  and 

( )0,0,t tB r=   B , assuming that the radial (expansion)  velocity vanish. The longitudinal 

velocity zV  can also be eliminated through a transformation to the reference frame comoving 
with the jet. Such a rotating equilibrium satisfies the transfield equation (see e.g. Chan & 
Henriksen 1980) 
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In the Lagrangian approach the equations describing the flux tube dynamics in the thick flux 

tube approximation are given by the following: 
 
i) The equation expressing the magnetohydrostatic pressure balance of the internal 

(subscript i) gas  and magnetic pressure of the flux tube with the total pressure of the 
external medium (subscript e),  
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ii)  The flux freezing conditon following from the induction and continuity equations, 
 

D

Dt ρ ρ
   = ⋅∇   
   

B B
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iii)  The polytropic equation of state, 
 

sbti ip γρ − =                                 (4) 
 

iv) The equation of motion, 
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⋅∇∂= − + ⋅∇ + − × × + ×

∂
B Bv
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The gradient of the total pressure in (5) can be eliminated using equation which describes 

the stationary equilibrium of the external medium. By projecting on the generalized Frenet basis 
we obtain the equations for the motion of a thick magnetic flux tube. 

3. Linear stability analysis 

In this section we calculate the geometrical changes caused by a small displacement which we 
apply to the equilibrium pathof the tube in order to determine its stability properties. We perturb 
the flux tube by a Lagrangian displacement, ξ , of its equilibrium path, ( )0 0sr , such that the 
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position of a fluid element which initally was at arc length 0s  is given by ( ) ( )0 0 0,s s t= +r r ξ . 

We express ξ  in terms of the generalized Frenet basis ( ), ,r tθe e e and the cylindirical polar 

basis: 
 

( )0 0 0 0, r r t ts t θ θξ ξ ξ= + +ξ e e e                                                                          (6) 

 
( )0 0 0 0, R R z zs t φ φξ ξ ξ= + +ξ e e e                                                                     (7) 

 
The relation between the bases in the unperturbed configuration  for binormal  helix 

structure is 
 

0 0t φ=e e ;         0 0 0n r R= = −e e e  ;       0 0 0b zθ= =e e e                                                              (8a) 
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For the present case of a flux-tube ( )0 0 0s r φ= , we convert all spatial derivatives with 

respect to 0s   into partial derivatives with respect to the unperturbed azimuthal coordinate, i.e. 

0 0 0

1

s r φ
∂ ∂=

∂ ∂
. Consequently, solution can be written in the form ( )0exp im i tξ φ ω= −ξ  where 

ξ  is the amplitude, ω  the frequency and m  the (integer) azimuthal wavenumber. Thus we 

have 
0

,im i
t

ω
φ
∂ ∂→ → −

∂ ∂
.  

 
The resulting dimensionless dispersion relation is given below: 
 

4 3 2
4 3 2 1 0 0a a a a aω ω ω ω+ + + + =� � � �                  (9) 

5. Numerical solution of the  dispersion relation 

To study the instability in different ranges of the multidimensional parameter space we will 
present imaginary part of the growth rate of the instability versus the azimuthal Mach number 
and the magnitude shear force, for different choices of the other parameters. Figure 1 show the 
instability growth rate at a fixed radius 0 1r r= = , for different modes 1,3m =  and different 

plasma beta value 0.1,10β = . The Alfven speed 1Av =  and the density at 0r , 0 1ρ =  are fixed.  
The Figure 1 shows that the configuration is strongly destabilized by the shear force in all 

cases. In the smaller m modes, the stabilizing effect of the rigid rotation is remarkable, since 
rotation velocities of the higher than the Alfven speed fully stabilize the flow in many cases.  
However, it is clearly seen that the higher m  modes are generally more stable. This is because 
the higher m  modes correspond to greater bending and thus exposed to more of the restoring 
magnetic tension. 
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Fig. 1: The growth rate for the   0.1 and 10β =  , 1 and 3m =  mode versus rotation and shear with all the 

forces taken into account. 

6. Future studies 

Firstly, we will check the dispersion relation, becuse  the coefficents of the dispersion 
relation is so long. Secondly, we’ll solve dispersion relation for another parameters and also 
different range. We’ll consider several idealized jet radial equilibria in order to illusturate 
consequences of our results for jet models. Lastly, we compare our results with theoritical and 
observational arguments.  
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