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In this review, I will discuss how to characterize synchrotron X-ray variability of TeV blazars by

using the observed/simulated light curves. Apparently, temporal studies provide independent and

complementary information to the spectral studies, but surprisingly little attention has been paid

especially for the blazar study. Only exception is a classical argument for presence of “time lag”,

which may (or may not) reflect the diffrence of synchrotron cooling timescale. Also very recently,

it was suggested that the X-ray variability of TeV blazars indicates a strong red-noise, compared

to a fractal, flickering-noise of Seyfert galaxies. Various temporal techniques are proposed in

literature, e.g., the power spectrum density (PSD), the structure function (SF), and the discrete

correlation function (DCF) and other analysis tools, but special care must be taken if the data

are not well sampled and observation is relatively short compared to a characteristic timescale

of the system. Also, the situation is being more complicated for low-Earth orbit satellites, e.g.,

ASCA, RXTE and BeppoSAX , since the light curve inevitably contains “periodic gap” due to the

Earth occultation (every � 6ksec). I will present detailed approaches to see how the "gap" and

the "finite length" of the data affects the results of temporal analysis, and to what extent we can

believe in our results. Finally, I will briefly comment on the high-sensitivity X-ray observations

with MAXI, that may shed new light on the forthcoming GLAST era.
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X-ray Variability of TeV Blazars Jun Kataoka

1. Introduction

Blazars are commonly variable from radio to γ-rays. The variability timescale is shortened
and the radiation is strongly enhanced by relativistic beaming. For extragalactic TeV sources, the
X-ray/TeV γ-ray bands correspond to the highest energy ends of the synchrotron/inverse-Compton
emission, which are produced by electrons accelerated up to the maximum energy (e.g., Inoue
& Takahara 1996; Krik, Rieger & Mastichiadis 1998). At the highest energy ends, variability is
expected to be most pronounced, and in fact, such large flux variations are observed, on a timescale
of hours to days (e.g., Kataoka et al. 2001; Tanihata et al. 2001) or even shorter (minutes scale;
Aharonian et al. 2007; Albert et al. 2007). Thus the X-ray/TeV variability can be the most
direct way to probe the dynamics operating in jet plasma, in particular compact regions of shock
acceleration which are presumably close to the central engine.

‘Snapshot’ multiwavelength spectra principally provide us with clues on the emission mech-
anisms and physical parameters inside relativistic jets. On the other hand, detailed studies of time
variability not only lead to complementary information for the objectives above, but should also
offer us a more direct window on the physical processes operating in the jet as well as on the dy-
namics the jet itself. However, short time-coverage and under-sampling have prevented detailed
temporal studies of blazars. Only a few such studies have been made in the past for blazars, e.g.,
evaluation of the energy dependent “time-lags” based on the synchrotron cooling picture. For ex-
ample, by using ASCA data, Takahashi et al. (1996) argued the soft X-ray (< 1 keV) variation of
Mrk 421, observed to lag behind that of the hard X-rays (≥ 2 keV) by ∼ 4 ks, that may well be
ascribed to the energy dependence of the synchrotron cooling timescale. More recently, Kataoka
et al. (2000) interpreted an observed soft-lag and spectral evolution of PKS 2155-304 by a newly
developed time-dependent synchrotron self-Compton (SSC) model.

The above paradigm of “soft-lag” was concerned, however, by several aspects. First, intensive
X-ray monitoring of blazars has revealed not only soft lags but in some cases hard lags (Takahashi
et al. 2000) which may be a manifestation of another process, e.g., energy dependent acceleration.
Very recently, signature of hard lag was clearly observed in 1ES 1218+304, but this is so far an
only example of manifestation of possible acceleration timescale in any TeV blazars (Sato et al.
2008; also in this volume). Second, as Edelson et al. (2001) voiced concerns, there was a question
about the reliability of lags that are smaller than the orbital periods (∼ 6 ks) of low Earth orbit
satellites. This was refuted by Tanihata et al. (2001) and Zhang et al. (2004) who showed that,
although periodic gaps introduce larger uncertainties than evenly sampled data, lags on hour-scale
cannot be the result of periodic gaps. A time resolved cross correlation analysis of uninterrupted
Mrk 421 data obtained by XMM-Newton revealed lags of both signs, changing on timescales of up
to a few 103 s (Brinkmann et al. 2005). Hence the situation is very complex and still under debate.

Variability studies covering larger dynamic range and broader span of timescales have become
common for Seyfert galaxies and Galactic black-holes (Edelson & Nandra 1999; Markowitz et al.
2004; McHardy et al. 2005; 2008 in this volume). From power spectrum density (PSD) analyses,
it is well known that rapid fluctuations with frequency dependences P( f ) ∝ f−1∼−2, are charac-
teristic of time variability in accreting black hole systems (e.g., Hayashida et al. 1998). Although
their physical origin is still under debate, some tentative scenarios have been suggested to account
for these generic, fractal features (e.g., Kawaguchi et al. 2000). Similar studies have also been
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proposed for blazars, but still underway. It has been suggested that X-ray variability of TeV blazars
indicates a strong red-noise (P( f ) ∝ f−2∼−3) behavior, compared to a fractal, flickering-noise of
Seyfert galaxies (Kataoka et al. 2001).

These temporal studies are obviously important, however, special care must be taken if the
data are not well sampled and relatively short compared to the variability timescale of the system.
The prime motivation of this talk is to delineate the characteristic X-ray variability of TeV blazars,
using a simple Monte Carlro simulation to evaluate the possible effects caused by observing time
windows. Fortunately, we have now the GLAST mission successfully launched in June 2008, as
well as various excellent missions/telescopes available through radio to TeV energy bands. More-
over, future X-ray missions including Monitor of All-sky X-ray Image (MAXI) is ready for launch
early next year. A great advantage of GLAST and MAXI is to provide very uniform exposure
all over the sky, that may shed new light on the temporal studies of blazars especially on longer
timescale from a month to years.

2. Analysis Tools

2.1 Power Spectrum Density (PSD)

Power Spectrum Density (PSD) analysis is the most common technique used to characterize
the variability of the system. An important issue is the data gaps, which are unavoidable for low-
orbit X-ray satellites, such as ASCA, RXTE , and BeppoSAX . In these low-orbit satellites, Earth
occultation makes periodic gaps every � 6 ksec, even if we hope to make continuous monitoring
observations. Similarly, previous long-look observations of various TeV blazars (e.g., Mrk 501 and
PKS 2155−304 in Kataoka et al. 2001) inevitably faced serious artificial gaps, since the observa-
tions are spaced typically 3 or 4 orbits apart. To reduce the effects caused by such windowing, it is
recommended to use a technique for calculating the PSD of unevenly sampled light curves.

Following Hayashida et al. (1998), the NPSD (Normalized Power Spectrum Density) at fre-
quency f is defined as

P( f ) =
[a2( f )+b2( f )−σ 2

stat/n]T
F2

av
,

a( f ) =
1
n

n−1

∑
j=0

Fjcos(2π f t j),

b( f ) =
1
n

n−1

∑
j=0

Fjsin(2π f t j),

(2.1)

where Fj is the source count rate at time tj (0≤ j≤n−1), T is the data length of the time series and
Fav is the mean value of the source counting rate. The power due to the photon counting statistics
is given by σ2

stat. With our definition, integration of power over the positive frequencies is equal to
half of the light curve excess variance (e.g., Nandra et al. 1997).

To calculate the NPSD of certain data sets, it is recommended to make light curves of two
different bin sizes shorter/longer than orbital gaps (e.g., 256 and 5760 sec, respectively). Each
light curve is divided into “segments”, which are defined as the continuous part of the light curve.
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Figure 1: le f t: X-ray light curve of Mrk 421 (red), Mrk 501 (blue), and PKS 2155−304 (green) during
intensive monitoring campaign with ASCA, measured in 0.7−7.5 keV band. Flux is normalized by their
average intensities (dashed lines). right: Normalized PSD calculated from the light curves in the left panel.
See Kataoka et al. 2001 and Tanihata 2001 for more details.

One can then calculate the power at frequencies f = k/T (1 ≤ k ≤ n/2) for each segment and take
the average. In this manner, the light curve binned at shorter timescale is divided into different
segments every 5760 sec, corresponding to the gap due to orbital period. On the other hand, the
light curve binned at 5760 sec is smoothly connected up to the total observation length T , if further
artificial gaps are not involved. This technique produces a large blank in the NPSD at around
2×10−4 Hz (the inverse of the orbital period), but the effects caused by the sampling window are
minimized.

Figure 1(le f t) shows examples of observed X-ray light curves of three TeV blazars, obtained
during long (∼ 10 day) monitoring with ASCA in 1998−2000 (red: Mrk 421, blue: Mrk 501; green:
PKS 2155−304, respectively). Corresponding NPSDs are given in Figure 1(right). The upper
frequency limit is the Nyquist frequency (2×10−3 Hz for 256 sec bins) and the lower frequency is
about half the inverse of the longest continuous segments. These NPSD are binned in logarithmic
intervals of 0.2 (i.e. factors of 1.6) to reduce the noise. Note the NPSDs follow a power-law that
decreases with increasing frequency in the high-frequency range (typically, P( f ) ∝ f−2.5). Possible
signs of a roll-over can be seen at the low-frequency end ( fbr ∼ 10−5 Hz). Below this break, the
NPSD becomes significantly flatter, such that P( f ) ∝ f−1.0. Since all the NPSDs have very steep
power-law slopes, only little power exists above 10−3 Hz. This is very different from the PSDs of
Seyfert galaxies, for which powers are well above the counting noise up to 10−2 Hz (e.g., Hayashida
et al. 1998; Nowak & Chiang 2000).

Finally, we revisit the effects caused by sampling windows. As mentioned above, our PSD
technique is less affected by the sampling windows, because only the continuous parts of the light
curve are used for the calculation. In fact, this seems to have negligible effects for the present data,
because the interruptions are almost even and the observing efficiency is high (∼ 0.5). The most
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Figure 2: le f t: An example of simulated light curve described in the text. right: Examples of normalized
PSD calculated from 10 simulated light curves.

rigorous estimate of this effect would be obtained by simulating the light curves characterized with
a certain PSD, filtered by the same window as the actual observation. The resulting PSDs could then
be compared with that we assumed. For this purpose, using a Monte Carlo technique, we generate a
set of random numbers uniformly distributed between 0 and 2π and use them as the random phases
of the Fourier components. A fake light curve is then generated by a Fourier transformation, with
the constraint that the power in each frequency bin decreases as specified by the PSD. We simply
choose a deterministic amplitude for each frequency and randomize only the phases, a common
approach (e.g., Done et al. 1989). It may be most rigorous to also assume “random amplitudes”
distributed within 1 σ of the input PSD (Timmer & Kőnig 1995), but simulations based on their
algorithm remain as a future work.

Figure 2 (le f t) shows an example light curve thus produced, with a hypothesized PSD of
the form; P( f ) = P0 f−2.5 ( f ≥ fbr) and P( f ) = P0 ( f ≤ fbr), where fbr = 10−5 Hz. We have
made hundreds of such pseudo light curves and calculated the PSD as actual observational data.
Right panel shows the PSDs plotted for 10 sets of such light curves. One can see that even when
the orbital gaps are present, the resultant PSD is not affected seriously, and hence we can safely
determine the original PSD which produces the observed light curves.

2.2 Structure Function (SF)

Next we examine the use of a numerical technique called the structure function (hereafter,
SF). The SF can potentially provide information on the nature of the physical process causing any
observed variability. While in theory the SF is completely equivalent to traditional Fourier analysis
methods (e.g., the NPSD; § 2.1), it has several significant advantages. Firstly, it is much easier to
calculate. Secondly, the SF is less affected by gaps in the light curves (e.g., Hughes et al. 1992).
The definitions of SFs and their properties are given by Simonetti et al. (1985). The first order SF
is defined as

SF(τ) =
1
N ∑[a(t)−a(t + τ)]2, (2.2)
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Figure 3: le f t: Structure function calculated from the observed light curve of Mrk 421 with ASCA (see
Figure 1 le f t). right: Structure function calculated from the simulated light curves to see the effects caused
by finite length of data.

where a(t) is a point of the time series (light curves) {a} and the summation is made over all pairs
separated in time by τ . N is the number of such pairs. More rigorously, minor modification is
suggested in Tanihata et al. (2001), that one should use a continuous weighting factor proportional
to its significance of each data point when the flux uncertainties are non-uniform. Note that the SF
is free from the DC component in the time series, whereas techniques such as the auto-correlation
function (ACF) and the PSD are not.

The SF is closely related with the power spectrum density (PSD) distribution. If the structure
function has a power-law form, SF(τ) ∝ τβ (β > 0), then the power spectrum has the distribution
P( f ) ∝ f−α , where f is frequency and α � β + 1. We note that this approximation is invalid
when α is smaller than 1. In fact, both the SF and the NPSD should have zero slope for white
noise, because it has zero correlation timescale. However, the relation holds within an error of
Δα � 0.2 when α is larger than ∼1.5 (e.g., Paltani et al. 1997; Cagnoni, Papadakis & Fruscione
2001; Iyomoto & Makishima 2000). Therefore the SF gives a crude but convenient estimate of the
corresponding PSD distribution which characterizes the variability.

In general, the SF gradually changes its slope (β ) with time interval τ . On the shortest
timescale, variability can be well approximated by a linear function of time; a(t) ∝ t. In this
time domain, the resulting SF is ∝ τ2, which is the steepest portion in the SF curve. For longer
timescales, the slope of the SF becomes flatter (β < 2) reflecting the physical process operating
in the system. When τ exceeds the longest time variability of the system, the SF further flattens,
with β ∼ 0, which is the flattest portion in the SF curve (white noise). At this end, the amplitude
of the SF is equal to twice the variance of the fluctuation. In Figure 3 (le f t), the SF is calculated
for the light curves of Mrk 421 presented in Figure 1 (le f t). The resulting SF is normalized by
the square of the mean fluxes, and are binned at logarithmically equal intervals. Note that the SF
is characterized with a steep increase (β > 1) in the time region of 10−2 < τ /day < 1, roughly
consistent with the corresponding NPSDs given in Figure 2 (P( f ) ∝ f−2.5).

The SFs of the X-ray light curves show a variety of features. For example, the SF of Mrk 421
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(Figure 3 (le f t)) shows a complex SF that cannot even be described as a simple power-law, as it
flattens around 0.5 day, then steepens again around 2 days. A similar “roll-over” can be seen for
the SF of Mrk 501 and PKS 2155−304 around 1 day (Tanihata et al. 2001). Importantly, these
turn-overs reflect the typical timescale of repeated flares, corresponding to the break in the NPSDs
described in § 2.1. The complicated features (rapid rise and decay) at large τ may not be real and
may result from the insufficiently long sampling of data. The number of pairs in Equation (2.2)
decreases with increasing τ , and hence the resulting SF becomes uncertain as τ approaches T ,
where T is the total length of time series. The statistical significance of these features can be easily
tested using the Monte Carlo simulation. Figure 3 (right) shows a set of SFs calculated by assuming
the same PSD described in the previous section (P( f ) = P0 f−2.5 for f ≥ fbr, where fbr = 10−5 Hz).
Note we have simulated the light curves more than 5 times longer than actual observation. One
can see although the resultant SFs well agree below the break, wide variety exists if τ � 1/3 T due
to uncertainties caused by finite length of data. Therefore special care must be taken for possible
artifacts near τmax = T .

We next calculate the structure functions using all available X-ray data set between 1993 and
1998 for Mrk 421. Using 5 year’s ASCA data, we can investigate the variability in the widest time
domain over more than five orders; 10−2 ≤ τ /day ≤ 103. Figure 4 (le f t) shows a light curve
thus produced, while the SF is given in Figure 4 (right). Filled circles are observational data,
normalized by the square of the mean fluxes, and are binned at logarithmically equal intervals. The
SF shows a rapid increase up to τ /day � 1, then gradually flatten to the observed longest timescale
of τ /day≥ 1000. Fluctuations at large τ (τ /day≥ 10) are due to the extremely sparse sampling of
data. Although we cannot apply the usual PSD technique to such under-sampled data, it appears
the SF still can be a viable estimator.

In order to demonstrate the uncertainties caused by such sparse sampling, and to firmly es-
tablish the reality of the “roll-over”, we simulate the long-term light curves following the Monte
Calro method described above. We first applied this technique assuming a PSD of the form P( f )
∝ f−α , where α is determined from the best fit NPSD parameters given in Figure 1. Based on
a set of a thousand fake light curves, we computed the expected mean value, <SFsim(τ)>, and
variance, σSF(τ), of all the simulated SFs at each τ . The results are superimposed in Figure 5(b)
as crosses. Errors on simulated data points are equal to ±σSF(τ). One finds that errors become
larger at large τ , meaning that the SF tends to involve fake bumps and wiggles near the longest
observed timescale. Large deviations between the actual SFs ( f illed circles) and the simulated
ones (crosses) are apparent, but quantitative comparison with actual data is necessary.

To evaluate the statistical significance of the goodness of fit, and to test the reality of compli-
cated features in the SF, we then calculate the sum of squared differences,
χ2

sim = ∑k{log[<SFsim(τk)>]−log[SF(τk)]}2. Strictly speaking, “χ2
sim” defined here is different

from the traditional χ2, but the statistical meaning is the same. For the actual SFs, these values are
χ2

sim = 1608 for Mrk 421. We then generated another set of 1,000 simulated light curves and hence
fake SFs to evaluate the the distribution of χ2

sim values. From this simulation, the probability that
the X-ray light curves are the realization of the assumed PSDs (i.e., a simple power-law) is P(χ2)
< 10−3. We thus introduce a “break”, below which the slope of the PSD becomes flatter. Since
the exact position of a break is not well constrained, we simulate various cases of fbr = 3.9×10−5,
1.2×10−5, and 3.9×10−6 Hz, which correspond to the break in the SF at τ /day � 0.3, 1, 3, respec-
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Figure 4: le f t: Long-term X-ray flux variation of Mrk 421 between 1993 and 1998, measured in 0.7−7.5
keV band. right: Structure function of Mrk 421 based on long-term light curves presented in the le f t panel.
Filled circles represent the observational data, crosses represent simulated SF assuming a single-power-law
NPSD, and open squares represent simulated SF assuming a broken power-law NPSD. Full details are given
in the text.

tively. As a result, the statistical significance is significantly improved. Result is given in Figure 4
(right) as open squares. For Mrk 421, best fit χ2 was obtained when fbr = 3.9×10−6 Hz (χ2 = 47;
P(χ2) = 0.59). We thus conclude that (1) the PSD of the TeV sources have at least one roll-over at
10−6 Hz ≤ fbr ≤ 10−5 Hz (1 ≤ τ /day ≤ 10), and (2) the PSD changes its slope from ∝ f−1∼−2 ( f
< fbr) to ∝ f−2∼−3 ( f > fbr) around the roll-over.

2.3 Discrete Correlation Function (DCF)

In order to compare the time series in various energy bands quantitatively, we introduce the
discrete correlation function given by Edelson & Krolik (1988). This technique was specifically
designed to analyze unevenly sampled data sets. The first step is to calculate the set of unbinned
discrete correlations (UDCF) between each data point in the two data streams. This is defined in
the time domain as

UDCFi j =
(ai − ā)(bj − b̄)√

σ 2
a σ 2

b

, (2.3)

where ai and bj are points of the data set {a} and {b}, ā and b̄ are the means of the data sets, and
σa and σb are the standard deviation of each data set. The discrete correlation function (DCF) for
each time lag τ is defined as an average of the UDCF that have the same τ ,

DCF(τ) =
1
M ∑UDCFi j(τ), (2.4)

where M is the number of pairs in the bin.

The DCF advantages are that it uses all the data points available, does not introduce new errors
through interpolation, and calculates a meaningful error estimates. The standard error for each bin
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Figure 5: le f t: Time history of the X-ray emission of PKS 2155−304 during 1994 observation with ASCA.
Upper panel represents the X-ray right curves measured in 0.5−1.5 keV and 1.5−7.5 keV, respectively,
while the bottom panel shows the time history of hardness ratio. right: Discrete correlation function of PKS
2155−304 calculated from the light curves in the le f t panel. Time lags in 0.5−1.0 keV band was calculated
as compared to that in the 3.0−7.5 keV band.

is calculated as
σDCF =

1
M−1

(∑[UDCFi j −DCF(τ)]2)1/2. (2.5)

As an application, Figure 5 shows an example to see time-lag in the light curve of PKS
2155−304 (Kataoka et al. 2000). The data reveal a large flare at the beginning, followed by lower
amplitude fluctuations. The source variability is somewhat different in different energy bands. No-
tably, amplitude of flux change is larger at higher photon energies; a factor of 2 at 1.5−7.5 keV
(red), while it is a factor of 1.5 in the 0.5−1.5 keV (blue). Also note that the peak of the light curve
in the hard X-ray bands leads that in the soft X-ray bands by ∼ 4−5 ksec. This was also suggested
by direct fitting of the light curves with a simple Gaussian plus constant offset, resulting that a lag
of the peaking time by � 4 ksec. We therefore computed the cross correlations using the the DCF
by dividing the 0.5−7.5 keV range into five energy bands and measured the time lag for each light
curve compared to the 3.0 −7.5 keV light curve. The results are shown in Figure 5 (right), again
suggesting � 4 ksec lags in the X-ray variability of PKS 2155−304.

As we have seen in §1, reality of this small amount of lag is still matter of debate, due to the
periodic gaps (∼ 6 ks) of low-Earth orbit satellites (e.g., Edelson et al. 2001). Meanwhile, it is
also suggested that lags on hour-scale can hardly be produced by periodic gaps based on careful
simulations (e.g., Tanihata et al. 2001; Zhang et al. 2004). To quickly follow their arguments, I
have made hundreds pairs of light curves by Monte Carlo simulation, one of which is artificially
“lagged” by 4 ksec. Then the resultant light curves are filtered by the same window as the actual
observation. Figure 6 (le f t) shows an example pair of light curves thus produced, and Figure 6
(right) shows the calculated DCF for 10 pairs of light curves. It seems that the DCF exhibits large
uncertainties but the peak of the DCF is always retained as expected (i.e., 4 ksec). Obviously,
higher quality X-ray data which are less affected by window sampling is strongly awaited for
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Figure 6: le f t: An example of simulated light curve to evaluate the effects caused by orbital gap in the
measurement of time lag. right: Examples of DCFs calculated from artificially lagged (by 4000 sec) light
curves.

further clarification of this long standing problem. At this point, it is also worth noting the most
recent observation of a TeV blazar 1ES 1218+304 exhibiting a clear signature of time-lag which is
much larger than the orbital gap (∼ 20 ksec), but in the opposite sense (so-called “hard-lag”). For
more detail, see Sato et al. 2008 in this volume.

3. Future Prospects; GLAST and MAXI

In the previous sections, we showed that temporal techniques, such as PSD, SF and DCF
are indeed powerful tools to understand the nature of variability in blazars, as long as various
artifacts are correctly taken into account. We showed that the Monte Calro simulation is the one
of the best way to evaluate possible artifacts caused by window sampling as well as finite length
of data. These approaches, however, are very time-consuming works and somewhat conservative
for future progress. Very fortunately, we will have two important missions to uniformly/densely
observe celestial sources in the high energy regime: GLAST and MAXI. In particular, GLAST was
successfully launched June 11, 2008, and the activation of the LAT (Large Area Telescope) is about
to begin (Madejski et al. 2008 in this volume).

It is widely expected that GLAST will detect a large number (probably between 3,000 and
10,000) of extragalactic sources, most of which will be identified as blazars. Moreover, the LAT
large field-of-view combined with scanning mode will provide a very uniform exposure over the
sky, allowing constant monitoring of all detected blazars and flare alerts to be issued. Apparently,
simultaneous multiwavelength campaigns are essentially important for both “EGRET blazars” (i.e.,
well-established sources) as well as newly detected γ-ray sources. In X-ray, many observatories are
already being actively prepared. For example, we are planning dedicated campaigns of 7 quasar
hosted blazars (QHBs) as a part of Suzaku-AO3 as listed in Table 1. Assuming a large flare as
that observed for 3C 279 in 1991, Suzaku can determine the X-ray spectrum up to 300 keV with
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Source Name Redshift Class Flux (2-10 keV) Flux (≥100 MeV)
[10−12 erg/cm2/s] [10−5 ph/cm2/s]

PKS 0208-512 1.00 HPQ 9.5 85.5±4.5
Q 0827+243 0.94 LPQ 4.8 24.9±3.9
PKS 1127-145 1.18 LPQ 11.0 38.3±8.0
PKS 1510-089 0.36 LPQ 10.0 18.0±3.8
3C 454.3 0.86 HPQ 11.0 53.7±4.0
3C 279 0.54 HPQ 13.0 89.0±3.2
PKS 0528+134 2.06 LPQ 30.0 60.0±3.0

Table 1: A list of “VIP” blazars to be simultaneously observed with GLAST and Suzaku in 2008/09.

Figure 7: An expected X-ray sky map for 1 day exposure with MAXI.

an unprecedented accuracy. Coordinated observations between GLAST and X-ray satellites are
crucial for further understanding the nature of various types of blazars.

Another important mission for future blazar studies will be the Monitor of All-sky X-ray Image
(MAXI). MAXI is an X-ray all-sky monitor which is currently scheduled to be attached to the
Japanese Experiment Module - Exposed Facility (JEM-EF) on the International Space Station (ISS)
in early 2009. The MAXI carries two scientific instruments: the Gas Slit Camera (GSC) and
the Solid State-slit Camera (SSC). The GSC consists of position-sensitive proportional counters
with large collecting area of 5350 cm2 in 2−30 keV range, while the SSC is utilizing 32 X-ray
CCD chips covering an energy range of 0.5-12 keV. The MAXI has two sets of GSC and SSC
orthogonally oriented, each of which covers a narrow instantaneous field of view of 1.5 deg times
160 deg that sweeps over the whole sky during every orbit of 90 minutes. Thus a certain sky
area is generally monitored twice in an orbit. The expected detection sensitivity for the GSC is
∼5 mCrab in a day and ∼1 mCrab in one month, which is higher by a factor of 5 than that of
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Figure 8: le f t: Simulation of 3C 273 light curve observed with MAXI. Data are binned at 0.25 day (upper)
and 1 day (lower), respectively. right: Structure function of Mrk 421 calculated from the simulated light
curves with MAXI as a 10 mCrab source.

RXTE/ASM. Such a high sensitivity and its monitor capability are very useful in study of AGNs,
compact sources such as microquasars and Galactic blackholes.

Figure 7 shows the expected X-ray sky map for 1 day exposure with MAXI. Bright AGNs,
such as 3C 273 (� 5 mCrab) and Mrk 421 (� 10 mCrab) can be detected with more than 5 σ level
everyday, allowing for the first time non-bias monitoring of the sources from a day to more than
year scale. Figure 8 (le f t) shows the simulated long-term (1 year) light curve of 3C 273, assuming
a PSD slope of 2.0 with break time scale of 1/ fbrk � 100 day. The resultant structure function of the
light curve, presented as Figure 8 (right), clearly revels variability nature of blazars on extremely
longer timescale than the characteristic break. It is suggested that these long-term trend may be
produced by the time variation of accreting matter near the central black hole, as well as the duty
cycle of mass ejection to the relativistic jet, which provide important challenges to blazars in the
next decade.
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