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With the advent of the new generation of Cherenkov telescopes such as H.E.S.S., MAGIC, CAN-

GAROO III and VERITAS, about 20 active galactic nuclei belonging to the blazar category have

been clearly detected at very high energies. Spectacular flares were observed in a few of them,

such as Mkn 421, Mkn 501 and PKS 2155-304, during which gamma-ray fluxes could be sampled

with time intervals of a few minutes, an important asset in the quest of a smallest time-scale in

the underlying phenomena. In the very-high-energy domain,the experimental situation is how-

ever more tricky than in variability studies carried out by X-ray satellites: the time resolution

critically depends on the flux itself, due to both photon statistics and background contamination,

and the continuous time series are never longer than a few hours. Nevertheless, a description of

the observed phenomena by a random stationary process characterized by a simple power density

spectrum — a power law of frequency — can be investigated. Such a study requires simulations

of very long time series in which the experimental effects are taken into account. Using H.E.S.S.

observations of PKS 2155-304 in July 2006, it is shown that different observables, namely excess

variances measured over different durations as well as Kolmogorov structure functions, can be

consistently accounted for by a simple log-normal process.
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The TeV emission of blazars viewed as a random stationary process Bernard Degrange

Figure 1: Light curve of the blazar PKS 2155-304 as observed by H.E.S.S. on MJD 53944. The figure is
taken from ref. [2].

1. Introduction

The recent spectacular increase of the sensitivity of Cherenkov telescopes (H.E.S.S., MAGIC,
VERITAS and CANGAROO III) has led to the detection of about 20 blazarsemitting in the TeV
energy range, as reviewed in this workshop by W. Benbow [1]. Unfortunately, most of these blazars
are weak TeV emitters with fluxes of the order of a few percent of that of the Crab nebula in
the same energy range. However, a handful of them (Mkn 421, Mkn 501, 1ES 1959+650 and
PKS 2155-304) sometimes exhibit dramatic flares during which the gamma-ray flux is so high
that significant variability can be observed, even over timescales of the order of a few minutes
(Fig. 1). Until recently, variability studies carried out with Cherenkov telescopes (e.g. [2], [3])
have essentially characterized light curves by empirical variables such as “doubling time”, “excess
variance”, and “fractional variability” per night (see e.g. [4] for definitions).

This situation contrasts with that of the X-ray domain, in which the power spectrum of the
fluctuations of the X-ray flux can be measured and is used to define a state of the object. This is
the case for galactic X-ray binaries [5] as well as for active galactic nuclei [6]. This is illustrated
in Fig. 2 which shows the power spectral density of several X-ray binaries in different states, as a
function of frequency. In this framework, it is implicitely assumed that a given state of the system
can be described by a random stationary process characterized by thepower spectrum, at least
during a limited period. In this article, this point of view is applied to the blazar PKS2155-304, as
observed by H.E.S.S. during its flaring period in July 2006 (MJD 53944-MJD 53947).

The experimental constraints limiting the capability of Cherenkov telescopes in variability
studies are first reviewed in section 2. Taking these constraints into account, different methods
characterizing the source variability are explained in section 3, in particularthose in which the
power spectral density can be characterized by comparing the experimental light curves to a large
sample of very long simulated time series corresponding to a given stationary process. In section 4,
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The TeV emission of blazars viewed as a random stationary process Bernard Degrange

Figure 2: Power spectral density of black hole candidates in X-ray binaries for different states of these
objects. The spectrum labeled LS is that of Cyg X1 in the low state. The figure is taken from ref. [5].

such a method is applied to H.E.S.S. data taken on PKS 2155-304 in the period MJD 53944-
MJD 53947. It is shown that the data can be accounted for by a single logarithmo-normal process
and that the power spectral density can be parametrized by a power law offrequency in the interval
[

10−4Hz,10−2Hz
]

.

2. Experimental constraints with Cherenkov telescopes

The high sensitivity of the most recent arrays of Cherenkov telescopesrelies on two main
factors: firstly, their large effective detection areas, typically 6× 104 m2 to 105 m2; secondly,
their powerful rejection of the background of hadronic cosmic rays dueto fine grain imaging and
to stereoscopic reconstruction of atmospheric showers. However, theyare submitted to several
constraints which make variability studies more tricky than those of satellite experiments:

• Observations require moonless clear nights and generally several sources are observed during
the same night; therefore, a given object cannot be continuously monitored during more than
a few hours.

• The energy threshold (thus the effective detection area) varies with the zenith angle dur-
ing the observations due to source tracking. Therefore, spectrum-dependent corrections are
necessary to produce a light curve at a fixed energy threshold.
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The TeV emission of blazars viewed as a random stationary process Bernard Degrange

Figure 3: Minimal observation duration for a 5 standard deviation detection of a source by H.E.S.S. at
a zenith angle of 20◦, as a function of the gamma-ray flux, for an energy threshold of 200 GeV. In most
observations of PKS 2155-304, the flux was of the order of 10% of that of the Crab nebula. Fluxes measured
during the flares of July 2006 are indicated by the red line superimposed to the curve.

• Finally, the light curve sampling strongly depends on the gamma-ray flux itself.As a conse-
quence, different frequency domains are accessible at different levels of flux.

This last point is illustrated in Fig. 3 which shows the minimal time∆t necessary for H.E.S.S. to
get a 5 standard deviation detection of a source as a function of the gamma-ray flux above 200 GeV
for a 20◦ zenith angle. For low fluxes (say less than 10% that of the Crab nebula), the flux error is
dominated by the hadronic background; for higher fluxes, the sensitivityis only limited by photon
statistics. These two regimes are indicated by the central dotted lines in Fig. 3. In most of the
observations, PKS 2155-304 is found to emit at the level of 10% of the Crab flux and a significant
measurement requires one hour of observation. During the flares of July 2006, the source intensity
varied between 1 and more than 10 Crab units, and the figure shows that, in the most favorable
situations, it is possible to sample the light curve every minute.

3. Characterizing the variability

Several empirical variables have been proposed to characterize the variability of a source.
They are the following [4]:

• The “excess variance”σ2
exc is obtained by subtracting the contribution of experimental errors

from the variance of the fluxes (Φk = Φ(tk), k = 1,N) measured at different timestk on a
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The TeV emission of blazars viewed as a random stationary process Bernard Degrange

given light curve segment:
σ2

exc = var(Φ)−σ2
err

• The “fractional variability”Fvar is defined as the ratio of the excess r.m.s.σexc to the average
measured flux:

Fvar =
σexc

Φ

• The “doubling time”t2 is obtained from the fluxesΦk, in the following way:

t2 = min(τkl) where τkl =

∣

∣

∣

∣

tk− tl
Φk−Φl

∣

∣

∣

∣

Φk +Φl

2

As an alternative definition of the doubling time, one takes the averaget ′2 of the 5 smallest
values of theτkl.

All the preceding variables depend on the durationT of the light curve segment over which they
are measured, as well as on the size∆t of the sampling interval of the light-curve. In our studies,T
is hardly larger than a few hours, whereas∆t can be of the order of a few minutes during big flares.
These figures are quite different from those related to X-ray observations. Moreover, measuring
the excess variance (and the corresponding excess r.m.s.) requires that the flux be significant over
the light-curve segment of interest. The preceding variables are thus strongly affected by the sen-
sitivity of the instrument and by the intensity of the source which constrainT and∆t. They are not
intrinsic properties of the source.

In contrast, if one adopts the point of view of a random Gaussian stationary process, the
power spectral densityP(ν) as a function of the frequencyν is an intrinsic characteristics of the
source. As a matter of fact, in the X-ray domain, power spectra are currently measured for binary
systems and for active galactic nulei [6]. In the very high energy domain,with short continuous
observation durations and with typical measurement errors on the flux, it isdelicate to directly
determine the power spectrum from the Fourier transform of the light curve since this procedure
is very sensitive to windowing effects. On the other hand, power spectraoften take the form of a
power law of frequency in a large domain of frequencies. Fourier analysis of the PKS 2155-304
light curve of MJD 53944 [2] does suggest such a power lawP(ν) ∝ ν−α with an exponentα
close to 2 (Fig. 4). Similarly, X-ray observations of PKS 2155-304 by the Beppo-SAX satellite in
1996 and 1997 [4] had also found a power law dependence (Fig. 5) in the same frequency range
(10−2−10−4 Hz). Such a power density spectrum with an indexα close to 2 is that of a red noise,
which makes windowing effects particularly important due to low-frequencyleakage [7]. In this
work, we assume the form of the power lawP(ν) = K(νref/ν)α and give a parametric estimation
of the exponentα , as well as of the power spectral densityK at a reference frequency, namely
νref = 10−4 Hz. This value was chosen to minimize the correlation between the two measured
parametersK andα. It should be noted that the power law cannot be valid for arbitrarily high or
low frequencies. At high frequencies, a cut-off is expected at the smallest time scale imposed by
the size of the emitting region (causality). At low frequencies, at least one break is expected to
avoid the infrared divergence ifα ≥ 1. The parametersα andK are determined by a maximum
likelihood method in which the distributions of the experimental observables arecompared to those
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The TeV emission of blazars viewed as a random stationary process Bernard Degrange

Figure 4: The Fourier power spectrum of
the light curve of PKS 2155-304 during 90
minutes on MJD 53944. The dotted line is the
level of noise induced by measurement errors.
The figure is taken from ref. [2].

Figure 5: Power spectral density of PKS 2155-304 from
X-ray observations by Beppo-SAX in 1997. The figure is
taken from ref. [4].

from simulated time series generated by random processes with various values ofα andK. At this
stage, it is important to specify the relevant Gaussian random variable. Ifthe flux results from a
sum of different components, it is expected to be Gaussian. On the opposite, if it results from a
multiplicative process, its logarithm is expected to be Gaussian [8]. These twopossibilities are
taken into account in the simulations which are now briefly described.

For practical reasons, simulated light curves are generated by Fourierseries, which implies a
discrete set of frequencies. This approximation is reasonable if the fundamental frequency is very
low. Hence, light-curve segments are extracted from series of duration much longer (≈ 2×105 s)
than those of the periods of continuous observations. Each term of the series has a random phase
and its Fourier coefficient is normally distributed with 0 mean and with a variancegiven by the
power spectrum. These series are considered to give either the variations of the flux, or those of
its logarithm. Simulated light curves are segmented into active periods and gapsof same durations
as the experimental ones in order to account for windowing effects. Theflux is averaged over
time intervals of same duration∆t as in the experimental light curve and its value is distorted
according to measurement errors in the conditions of real observation. With 500 realistic light
curves generated for each set{α,K}, the expected distributions of any measured variable can then
be determined and further used to build likelihood functions.

4. The exceptional flaring period of PKS 2155-304, as observedby H.E.S.S. in July
2006

The light curve of PKS 2155-304 during the period of highest intensities (MJD 53944-53947)
is shown in Fig. 6 in intervals of∆t = 4 minutes.

4.1 The excess r.m.s.-flux correlation

If the gamma-ray flux were the relevant Gaussian variable, its average value would be com-
pletely uncorrelated with the higher moments of the light curve, in particular with the excess vari-
ance (thus with the excess r.m.s.). On the opposite, a strong r.m.s.-flux correlation is expected if
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Figure 6: The light curve of PKS 2155-304 as observed by H.E.S.S. during 4 nights: MJD 53944, 53945,
53946 and 53947.
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Figure 7: Excess r.m.s. versus average fluxes for
segments of light curve of 20 minutes duration, sam-
pled every minute.
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Figure 8: Excess r.m.s. versus average fluxes for
segments of light curve of 80 minutes duration, sam-
pled every 4 minutes.

the Gaussian variable is the logarithm of the flux (log-normal process). Such correlations have
been observed in the X-ray emission of binary systems and of some active galactic nuclei (see e.g.
[8]). In order to investigate a similar correlation in H.E.S.S. data on PKS 2155-304, two kinds
of light-curve segments have been used, characterized by their durationT and their sampling in-
terval∆t: T = 20 minutes and∆t = 1 minute for segments of the first kind;T = 80 minutes and
∆t = 4 minutes for segments of the second kind. The excess r.m.s. is plotted versusthe average
gamma-ray flux in Fig. 7 and in Fig. 8 for segments of the first and of the second kind respectively.
With light-curve segments of 20 minutes, the 95% confidence interval for the correlation coefficient
is found to be[0.36−0.81] and is hardly affected when the experimental points in the diagram are
moved within the experimental errors on the flux. With light-curve segments of 80 minutes, the
correlation coefficient is still higher and found within the interval[0.84−0.98] at 95% confidence
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Figure 9: Excess r.m.s. versus average fluxes for 500 simulated segments of light curve of 20 minute
duration, sampled every minute, forα = 2 andKℓ = 500 Hz−1.

level. Here also, the size of experimental errors does not affect the conclusion: the gamma-ray
flux is clearly not the relevant Gaussian variable, this possibility being excluded at the level of 7
standard deviations.

Therefore, in the following, data are compared to simulations of log-normal processes charac-
terized by power spectra of the formKℓ(νref/ν)α . Since the Gaussian variable is ln(ν), the integral
of the power spectrum over all frequencies gives the total fractional variability squared which is
dimensionless and thereforeKℓ is expressed in Hz−1 (or in s). The parametersα andKℓ are then
determined by a maximum likelihood method. For each set{α,Kℓ}, 500 light curves are simu-
lated from which the distributions of the measured quantities are extracted: flux, excess r.m.s. or
alternativelyFvar for light curve segments of both kinds. This is illustrated in Fig. 9 showing the
excess r.m.s.-flux diagram obtained from simulations of a log-normal randomprocess withα = 2
andKℓ = 500 Hz−1, for light curve segments of 20 minutes. For a given set{α,Kℓ}, the likelihood
function L(α,Kℓ) is built from the simulated distributions of the average fluxΦ and from those
of the fractional variabilityFvar measured over light curve segments of a given kind. It should be
noted that, for those segments in which the flux does not vary significantly, the calculated excess
varianceσ2

exc = var(Φ)−σ2
err may be negative so thatFvar = σexc/Φ cannot be calculated. This

situation may occur both in data and in simulations in which measurement errors are taken into
account. Clearly, the probability of such a situation depends on the parameters α andKℓ and must
be taken into account in the maximum likelihood method. Therefore, for a given number of exper-
imental segments (each one yielding an entry in a given histogram), simulations allow to calculate
the expectation values of the following quantities:

• number of entries in a givenΦ interval;

8
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Figure 10: Maximum likelihood determination ofα andKℓ. Contours are given for 95% confidence domains
in the{α,Kℓ} plane. Red contours are obtained by the method explained in section 4.1, using light curve
segments of 20 minute duration sampled every minute. Blue contours are similarly obtained with light curve
segments of 80 minute duration, sampled every 4 minutes. Black contours are obtained from the study of
structure functions explained in section 4.2.

• number of entries in a givenFvar interval;

• total number of entries in the last histogram (i.e. those withσ2
exc > 0).

The distributions ofΦ andFvar are assumed to be independent, which is confirmed by simulations.
The likelihood functionL(α,Kℓ) is thus given by the product of the probabilities to observe the
experimental histograms ofΦ andFvar, as well as the number of segments withσ2

exc > 0. As a
result, 68% and 95% confidence regions in the{α,Kℓ} plane are shown in Fig. 10. Both kinds of
light-curve segments have been used; red contours correspond toT = 20 minutes and blue contours
to T = 80 minutes. Both yield compatible values ofα andKℓ. The indexα is found to be close
to 2, a value similar to those found in previous X-ray observations [4], butthe power at 10−4 Hz is
higher than the one measured in X-rays by almost an order of magnitude.

4.2 Structure function

An alternative way to derive the parametersα andKℓ is provided by the study of the first order
Kolmogorov structure functionS(τ) [9] [10], defined as the average value of the squared difference
between signals as measured at times separated by a delayτ. Since the relevant Gaussian variable
is the logarithm of the flux, the structure function is given by :

S(τ) = [lnΦ(tk)− lnΦ(tk + τ)]2

9
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Figure 11: Structure function from PKS 2155-304 observations during 4consecutive nights MJD 53944-
MJD 53947 (crosses). The upper and lower dotted lines indicate the limits of a 68% confidence interval
expected from simulations of a statistical ensemble of light curves withα = 2 and log10(Kℓ/Hz−1) = 2.8.

For small values ofτ, this function is essentially equal to twice the variance induced by the mea-
surement errors but at larger values ofτ, the function is sensitive toα andKℓ. However, large fluc-
tuations from series to series are expected from Monte-Carlo simulations for a given set{α,Kℓ}.
The structure function obtained from the 4 consecutive nights with the highest average intensities
(MJD 53944-53947) is given by crosses in Fig. 11. In the same figure,the upper and lower dotted
lines indicate the limits of a 68% confidence interval expected from simulations ofa statistical en-
semble of light curves withα = 2 and log10(Kℓ/Hz−1) = 2.8. Moreover, for a fixed value ofτ, the
distribution of lnS(τ) for a given set of parameters{α,Kℓ} is found to be almost Gaussian in simu-
lations. Therefore, a likelihood function ofα andKℓ based on the first order structure function can
be built. The black contours in Fig. 10 show the 95% confidence region in the{α,Kℓ} plane ob-
tained by this method. The result is in good agreement with the one obtained in section 4.1; indeed,
the structure function provides a more accurate measurement ofα andKℓ. All the preceding meth-
ods can be combined to give the final result:α = 2.06±0.21 and log10(Kℓ/Hz−1) = 2.82±0.08
at 95% confidence level.

4.3 Doubling times

The doubling timest2 andt ′2 defined in section 3 are also often used to characterize the vari-
ability of a blazar. They are directly related to the quantities

τkl =

∣

∣

∣

∣

tk− tl
Φk−Φl

∣

∣

∣

∣

Φk +Φl

2
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Figure 12: 95% confidence regions in the{α,Kℓ} plane obtained from the doubling times: red contours
correspond to MJD 53944 and black ones to MJD 53946.

MJD 53944 MJD 53946
∆t t2 = min(τkl) t ′2 = (5smallestτkl) ∆t t2 = min(τkl) t ′2 = (5smallestτkl)

1 min. 1.28±0.38 2.84±1.00 1 min. 1.38±0.37 2.33±0.97

2 min. 2.63±0.54 4.53±1.59 2 min. 3.49±1.00 6.22±2.22

Table 1: Doubling timest2 andt ′2 in minutes from two observation periods of PKS 2155-304 (MJD53944
and MJD 53946) with different sampling intervals. See text for the definitions oft2 andt ′2.

defined for each pair of flux measurements in the light curve. In the determination oft2 = min(τkl)

or t ′2 (average of the 5 smallest values ofτkl), pairs are taken into account only if they satisfied the
two following conditions:

• both fluxesΦk andΦl must be different from zero with a significance greater than 2 standard
deviations;

• the relative error on the flux difference|Φk−Φl | must be smaller than 30%.

Howevert2 andt ′2 strongly depend on the sampling interval∆t of the light curve as shown in Table 1
for two data sets (MJD 53944 and MJD 53946). Simulations can also be usedto investigate the
sensitivity of the doubling times to the parametersα andKℓ. The 95% confidence regions in the
{α,Kℓ} plane obtained from doubling times are shown in Fig. 12; these regions only constrain
log10(Kℓ) for α > 2 and yield values compatible with the result given in section 4.2. On the other
hand, doubling times are absolutely not sensitive toα .

Doubling times are often quoted to set an upper limit on the ultimate causality time scale inthe
gamma-ray emission process. However, it can be seen from Table 1 that their values are close to
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the minimal time to get a 5 standard deviation significance of the signal at high flux. Therefore, in
the future, more sensitive arrays of Cherenkov telescopes are likely to find smaller doubling times.
This can be checked by assuming no high-frequency cutoff in the spectrum and by simulating a
blazar flare withα = 2, log10(Kℓ/Hz−1) = 2.8 and an intensity comparable to that of PKS 2155-
304 on MJD 53946, as observed by a square array of 36 telescopes such as those of H.E.S.S. I. It
turns out that the light curve can then be sampled in intervals of 20 s and thatthe doubling timet2
is found to be 25 s (with 30% accuracy). Only if a significantly larger value of t2 were found, could
one claim a real cutoff in the power spectrum related to the size of the emitting region.

5. Conclusion

The variability of PKS 2155-304 in very-high-energy gamma-rays, as observed by H.E.S.S.
during the flaring period in July 2006, has been investigated as a random stationary process by
means of several methods which all yield consistent results. This study is thefirst of its kind carried
out on a blazar at very high energies. The observations can be well described by a log-normal
random process, which suggests an underlying multiplicative phenomenon. Between 10−4 Hz and
10−2 Hz, the power spectrum can be described by a power law with the indexα = 2.06±0.21,
typical of a red noise; the powerKℓ at 10−4 Hz is given by log10(Kℓ/Hz−1) = 2.82±0.08. A similar
red noise was observed in the X-ray emission of PKS 2155-304, but with amuch lower X-ray power
at 10−4 Hz. The preceding study should now be completed in several ways. First,it is important
to correlate the power density spectrum with the energy spectrum, in particular to investigate a
variation of the parameters in different energy bands. It may help characterize the different states
of the blazar. It is also important to investigate the power spectrum at lower frequencies, looking
for a spectral break which is necessary to avoid infrared divergence. New H.E.S.S. observations
and forthcoming multi-wavelength campaigns will be particularly useful to achieve this program.
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