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The High Energy Stereoscopic System (H.E.S.S) observed the BL Lac object PKS 2155-304 from
2004 to 2007. We investigate the nature of the light curve of PKS 2155-304, observed during the
exceptional flaring periods of July 28th (MJD 53944) to 31th 2006 (MJD 53947), through the
large variations in the γ-ray fluxes which allow us to study the excess rms-flux relation. We
show for the first time in this energy domain that the light curve can be considered as a random
stationnary process where the logarithm of the fluxes is the relevant Gaussian variable, bearing a
striking similarity with XRBs and Seyfert-type AGN variability.
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1. Introduction

H.E.S.S. is a system of four Imaging Atmospheric Cherenkov Telescopes (ACT) for γ-ray
astronomy in the 100 GeV - 50 TeV energy range. Observations and monitoring of active galactic
nuclei (AGN) are a key part of the scientific observation program of the instrument. PKS 2155-304
has been regularly observed and detected by H.E.S.S. since 2002. A flaring period of PKS 2155-
304 was detected by H.E.S.S in July 2006 with fluxes on average 7 times the Crab nebula flux,
allowing an unprecedented temporal resolution of a few minutes. For the first time in this energy
domain, we have the possibility to characterize the γ-ray variability with statistical methods used in
other energy bands. The light curve corresponding to the flaring period of July 28th (MJD 53944)
to 31th 2006 (MJD 53947) is shown in Fig.1 with a 4 minute sampling interval. Observations and
analysis of the July 28th data have been discussed in [1].

Figure 1: PKS 2155-304 light curve (MJD 53944 to 53947) with a 4 minute sampling interval.

We investigate whether the light curve observed by H.E.S.S. can be considered as a realiza-
tion of a random stationary Gaussian process. In this context, the γ-ray flux from the object is
considered as a random variable whose probability distribution function depends on time. A ran-
dom stationary Gaussian process is characterized on the basis of the Fourier transform of the light
curve, as follows: the Fourier components at different frequencies have random phases and their
amplitudes are independent variables, normally distributed with 0 mean; the dependence of their
variances upon the frequency, namely the power density spectrum (PDS), completely defines the
process; the latter is called “stationary” in the sense that the PDS is independent of time. Such PDS
obtained from the aperiodic X-ray light curves of binary systems have been used, together with the
corresponding energy spectra, to define different “states” of these objects [2]. In large frequency
intervals, the power spectra of XRBs, Seyfert-type AGNs and blazars in X-rays take the form of a
power law of the frequency ν , namely C(νref/ν)α ; α is the variability spectral index and C gives
the “power” (i.e. the variance) at a reference frequency νref chosen for convenience.

We want to investigate if a similar parametrization of the PDS holds in the VHE domain. We
are thus facing the following questions:
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• Can a random stationary Gaussian process account for the observed flaring periods of PKS 2155-
304 in 2006 ?

• What is the relevant Gaussian variable ? Is it the γ-ray flux (as expected if it results from
an additive process, i.e. from the contributions of several zones) or is it its logarithm (as
expected if it results from a multiplicative process, as in a cascade)?

2. RMS-flux relation

The excess rms of the quantity X is the root mean square of the intrinsic variance and is defined
as σxs =

√

var(X)−σ 2
err, where σ 2

err represents the contribution of the measurements errors on
the total variance. It gives an indication on how much the flux varies about the mean and helps
understand the mechanisms at the origin of the observed variability. If the process at the origin
of the variability is additive, the fluxes are normally distributed and one expects no correlation
between the excess rms and the mean of the flux, because all Fourier coefficients are statistically
independent. On the contrary, if the process is multiplicative, the logarithm of the flux is the
relevant variable and there is a strong correlation between the two quantities [4].
Mean values and standard deviations have been calculated over intervals of 1200 and 4800 seconds
extracted from PKS 2155-304 four nights light curve, with samplings of 1 and 4 minutes. Fig.2
and Fig.3 show the distribution of the measurements in the excess rms versus flux diagram for the
two samplings. Only those intervals with a significant variability (i.e. positive excess variance) are
taken into account.

Both figures show a proportionality between the excess rms and the flux. With intervals of
1200 seconds we find a correlation coefficient ρ = 0.64+0.17

−0.28 where the confidence interval at the
95% confidence level is derived following the Fisher transform. Thus, a Gaussian process that
predicts a zero correlation can be excluded at 4σ . For the 4800 seconds duration intervals, the
confidence interval on the correlation coefficient 0.94+0.04

−0.10 excludes a Gaussian process at a 7σ
level. The excess rms is strongly correlated with the mean flux level, showing that the normally
distributed variable is the logarithm of the flux.

3. Characterization of the lognormal process

In order to relate the observed light curve to a lognormal process, simulations are necessary.
For practical reasons, a discrete frequency spectrum with a very low fundamental frequency ν0 = 1

T0
is used in simulations. Since the logarithm of the flux is the normally distributed variable, one can
write:

ln(Φ(t)) =
u0
2 +

N
∑
n=1

un cos
(

2nπt
T0

+φn

)

(3.1)

where the Fourier coefficients follow:

〈u2
n〉 = σ 2

n = Kν0(
nre f

n )α (3.2)

with nre f =
νre f
ν0

. The two parameters K and α that completely describe the lognormal process will
be determined using the excess-rms correlation and structure functions. The reference frequency is
conventionnaly fixed to 10−4Hz.
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Figure 2: Excess rms versus flux, each point repre-
sents a measurement over 20 minutes. The solid line
is a least-squares fit to the data provided to guide the
eye (also in Fig.3).
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Figure 3: Excess rms versus flux, each point repre-
sents a measurement over 80 minutes.

3.1 Determination of the parameters using the rms-flux correlation

For a given set (K,α), a comparison
between the excess rms-flux correla-
tion plots derived from 500 simulated
light curves (see Fig.5) and the exper-
imental one is characterized by a like-
lihood function which is further max-
imized with respect to K and α . The
probability of obtaining the experi-
mental fluxes and fractional variabil-
ity distribution given a chosen (K,α)
set is calculated. The number of inter-
vals with positive excess variance is
also taken into account. Fig.4 shows
the experimental histograms of fluxes
and fractional variability for the inter-
vals of 1200 seconds.
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Figure 4: Histograms of fluxes and fractional variability for the
intervals of 1200 seconds derived from a light curve with a one
minute sampling.

Confidence regions at 95% are established and shown for the two duration intervals in Fig.6:
red contours are obtained with light curve segments of 20 minute duration and blue contours are
obtained with light curve segments of 80 minute duration.

The contours are in good agreement within each other and well constrain the lognormal pro-
cess.
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Figure 5: Histograms of fluxes and fractional variability obtained from 500 simulations of 1 minute sampled
light curves derived from a lognormal process with a spectral variability index α = 2 and a normalization
factor K = 500 Hz−1. The third line shows the distribution of the number of intervals with a positive excess
variance. It is equal to 33±6

59 which is compatible with the experimental number ( 30
59 ).

3.2 Structure function
The Kolmogorov structure functions are a useful tool in the study of red noise and have been

extensively used in telecommunication engineering as well as in astrophysics ([5],[6],[7]). Given
a signal X(tk) measured at regular time intervals (k = 1 to N) the first order structure function is
defined as follow:

S(τ) = X(tk)2 −2 X(tk)X(tk + τ)+X(tk + τ)2 (3.3)

where the bar on the symbols denote an average over the N measurements. Considering a random
Gaussian process X(t) defined by equation 3.1, it can be shown that structure functions averaged
over an ensemble of light curves are expected to vary as τ α−1. Note that here, X(t) is the logarithm
of the flux. However, this only holds for the ensemble of light curves, whereas the structure function
for a given value of τ is submitted to large fluctuations; furthermore windowing and sampling
effects distort the single structure function. Therefore, we shall compare the structure functions
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Figure 6: Contours are given for 95% confidence domains in the (K,α) plane. Red contours are obtained
by the method explained in section 3.1, using light curve segments of 20 minute duration sampled every
minute. Blue contours are similarly obtained with light curve segments of 80 minute duration, sampled
every 4 minutes. Black contours are obtained from the study of structure functions explained in section 3.2.

derived from the experimental light curve to those obtained from a large number of simulated light
curves corresponding to given values of α and K. Simulated time series with the same windowing
function, the same sampling intervals and realistic measurement errors have been extracted from
much longer ones. For a given value of τ , the distributions of log10 SF(τ) from the simulated
ensemble were found to almost follow Gaussian distributions, with expectation values λ (τ) and
standard deviations ∆λ (τ). Figure 7 shows the experimental structure function calculated over
the logarithm of the flux for the 4 minute sampled light curve. The dotted lines represent 68%
confidence intervals corresponding to the process defined by α = 2 and log10(K/Hz−1) = 2.8.
These limits take account of the fluctuations from series to series generated from the same process
and the errors affecting each simulated light curve, namely flux measurement errors and statistical
errors due to the limited number of measurements on the light curve.

The experimental structure functions can thus be compared to those of the simulated ensemble
by means of χ2 variables defined as follow:

χ2(α ,K) = ∑
k

{

log10[Sexp(τk)]−λ (τk)

∆λ (τk)

}2
(3.4)

This χ2 is minimized with respect to K and α and is used to define confidence domains in the
(K,α) plane (see Figure 6, black contours).

4. Conclusion

We show that a lognormal process can explain the observed variability of PKS 2155-304 be-
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Figure 7: Experimental structure function with the corresponding limits obtained from a process character-
ized by α = 2 and log10(K/Hz−1) = 2.8

tween MJD 53944 and 53947, favouring multiplicative scenarios. We have presented two dif-
ferent studies that characterize the PDS which give similar values for the variability index (α =

2.06±0.21) and for the power spectral density (log10(K/Hz−1) = 2.82±0.08) at 10−4Hz. These
results provide another quantitative similarity with variability observed in XRBs and AGN, and
might indicate that similar processes are at play in the inner regions.
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