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A time-dependent synchrotron self-Compton (SSC) leptonic model, developed with some analyt-
ical formulations and a numerical code is summarized. This SSC emission model, developed with
some analytical formulations and a numerical code, allow to investigate quantitatively the multi-
wavelength spectral variability of blazars, providing estimates for physical parameters and the
bolometric power. The temporal evolution of the electron distribution in a relativistic plasma blob
with isotropic magnetic field, is calculated resolving numerically a first order kinetic equation
with a fast semi-implicit finite differences scheme derived from a more general solving scheme
suitable for diffusion-advection Fokker-Planck equations. The model provides time-dependent
synchrotron and inverse Compton emissivities and spectral energy distributions, incorporating
radiative cooling as well as light crossing time effects and the relativistic beaming.

Workshop on Blazar Variability across the Electromagnetic Spectrum
April 22-25, 2008
Palaiseau, France

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:stefano.ciprini@pg.infn.it


P
o
S
(
B
L
A
Z
A
R
S
2
0
0
8
)
0
7
3

Analytical and numerical time-dependent modelling of SSC blazars variability

1. Introduction

The rapid and large-amplitude variability of blazars implies non-stationary emitting particle
distributions, and requires a time-dependent modelling. The energetic and rapid variable radiation
can be though as produced in a single active blob into the jet of the blazar, ignited by a shock,
and described therefore by a one-zone synchrotron self-Compton (SSC) scenario. Some exam-
ples of SSC numerical models are described in: [8, 5, 12, 10, 6, 9, 13]. The leptonic SSC and
time–dependent model summarized here, is implemented with some analytical calculations and
a numerical code, describing the evolution of the relativistic electrons injected with a rate Q(E)
[cm−3 s−1]), in a compact active region (knot, blob) of dimension R. The numerical code calcu-
lates then the time-dependent synchrotron and inverse Compton (SSC) emissivities and the spectral
energy distributions.

2. Kinetic equation and some solutions

Stochastic systems like Brownian motion, are characterized by fluctuant interactions, and the
macroscopic quantities are non-uniformly distributed resulting in a particle transport. The statistic
motion equation of the particle distribution can be approximated by a diffusion equation in case
of small fluctuations. The truncation at the second order of the integral operators expansion is
the so-called Fokker-Planck (or diffusion-advection) equation [3]. This kinetic equation is used in
various fields, and can be profitably used in the simple one-dimensional (1D) form (integrating with
spherical coordinates in the momentum space, under an ultra-relativistic regime, and for isotropic
and homogeneous distributions) to describe the relativistic electron distribution in the acceleration
and cooling regions of a blazar jet. The equation can be written as:

∂N(t,E)
∂ t

=
1

A(E)
∂

∂E

(
B(t,E)N(t,E)+D(t,E)

∂N(t,E)
∂E

)
− N(t,E)

τ(t,E)
+Q(t,E), (2.1)

where: 1) N(t,E)A(E)dE is the number of particles per unit volume with energy between E-
E + dE at time t; 2) D(t,E) is the diffusion coefficient in the energy space (dispersion around the
mean value of the energy gains); 3) B(t,E) is the sum of systematic energy gains (provided by mag-
netic turbulence interactions, acceleration by shocks, inverse Compton scattering gains, magnetic
reconnection, plasma waves, acceleration by electric fields, etc.) and of energy loss terms (syn-
chrotron radiation, Coulomb collisions, adiabatic expansion, etc.); 4) τ(t,E) is the characteristic
escape time or loss rate for cooling; 5) Q(t,E) is the source/injection term; 6) A(E) is the vol-
ume element spherically averaged. The nature of the solutions is sensitive to initial and boundary
conditions, and on the type of injection Q and losses. Neglecting the escape and losses terms the
previous equation assumes the form of a continuity equation: ∂N/∂ t = ∂F/∂E, where F(t,E) =
D(t,E)(∂N/∂E)+B(t,E)N is the 1D particle flux of particles. The no–flux boundary condition is
appropriate in our modelling (particles cannot gain energy without limits, because sources are finite
and cooling mechanisms win at high energies). Several methods are able to provide approximated
analytical solutions (eigenfunction expansion, WKBJ methods, Laplace transforms, Green Func-
tions, etc.). Green functions are appropriate here, because for diffusion and gain-loss processes the
eigenvalue spectrum is continuous. In the “hard-sphere” plasma turbulence approximation results:
D(t,E) ∝ E2, B(t,E) ∝ E2 and τ(t,E) = cost ([14]), and here some time–dependent solutions were
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Analytical and numerical time-dependent modelling of SSC blazars variability

found already by [7]. Considering an instantaneous gain of energetic electrons, a synchrotron and
IC cooling, an escape with no diffusive processes D(t,E) = 0, and expressing all in terms of the
non-dimensional Lorentz factor γ = E/mec2, the equation for our SSC model is reduced to:

∂N(t,γ)
∂ t

= b
∂

∂γ

(
γ

2N(t,γ)
)
+Q(t,γ)− N(t,γ)

τ(γ)
. (2.2)

where −γ̇ = bγ2 = 4
3

σT c
mec2 (UB +Urad(t,γ))γ2 [s−1], denoting with γ̇ the total synchrotron and IC

(SSC), cooling rate, and being UB = B2/(8π) and Urad(t,γ) (the photon field energy density). The
cooling time–scale is defined by: tcool =−γ/γ̇ = (mec2)/(4/3σT cγ(UB +Urad))

If the injection is independent from the time Q = Q(γ) and the electrons cools completely
before to escape (tesc � tcool), the distribution N achieves the equilibrium and results: N(γ) =

−1/γ̇

γmax∫
γ

dγ ′ Q(γ ′). Here if a single–energy injection is assumed (i.e. Q(γ) = Q0δ (γ − γmax)) we

obtain N(γ) ∝ γ−2. In the case of a power law Q(γ) = Q0γ−p, in the interval [1,γ] we obtain:
N(γ) ∝ γ−(p+1), if p > 1; N(γ) ∝

1
γ2

(
γ

1−p
max − γ1−p

)
if p < 1 (and when γ � γmax, N(γ) ∝ γ−2, as

in the single-energy case); N(γ) ∝ Q0
1
γ2 (lnγmax− lnγ) if p = 1. If the injection follows a power

law Q(γ) = Q0γ−p, in the interval [γmin,γmax], and p > 1, we have a break in the distribution, in
correspondence of γmin: N(γ) ∝ γ−2 if γ < γmin and N(γ) ∝ γ−(p+1) if γ > γmin.

Solutions of this type are not useful to handle time-dependent spectra and variability. Some
analytical solutions to time dependent equations can be found, even if a more complete treatment is
possible only with numerical codes. The equation (2.2) can be solved with the method of character-
istics and the Green function formalism, in the case of an isotropic pith angle distribution and ne-
glecting the escape term (tesc →∞): ∂N(t,γ)/∂ t− ∂

∂γ
(B(t,γ)N(t,γ)) = Q(t,γ), ⇒ L N(t,γ) =

Q(t,γ), with initial value N(0,γ) = f (γ). The kernel of the equivalent integral equation (Green
function), provides a formal solution of our partial differential equation:

N(t,γ) = N0(t,γ)+
+∞∫
−∞

dt ′
+∞∫
−∞

dγ
′ G(t,γ, t ′,γ ′)Q(t ′,γ ′) (2.3)

where N0(t,γ), is the general integral of the homogeneous associated equation L N0 = 0, while
the second term is a particular solution of the complete, inhomogeneous equation. Solutions to the
initial value homogeneous problem (i.e. a mere 1D continuity equation, ∂N0/∂ t + ∂F(N0)/∂γ =
∂N0/∂ t + (dF/dN0)(∂N0/∂γ) = 0), can be obtained with the methods of the characteristics of
Lagrange, reducing it to a system of ordinary differential equations. The used parameterized curve
is C : {γ = γ(r),γ(0) = s, and γ = γ(r),γ(0) = s}, being r the position along C and s the
intersection of the curve with the γ axis. The restriction of the function N0 to the curve C implies
dN0/dr = (∂N0/∂ t)(dt/dr) + (∂N0/∂γ)(dγ/dr). The solutions of this equation are given by a
surface S , produced by the passage of the characteristic curve C , through every point of the initial
curve Γ defined as Γ = {(t,γ,N0) : t = q(s), γ = p(s), N0 = N0(s), s1 < s < s2}. Solving the
characteristic parametric equivalent system, and removing the r and s coordinates, we obtain the
solution N0 = f (γ− (dF/dN0)t). In our case B(t,γ) =−γ̇ = bγ2, and choosing the initial condition
N0(0,γ) = f (γ) = kγ−(α+1), we can write the homogeneous solution:

N0(t,γ) = kγ
−(α+1)(1+bγt)−(α+1). (2.4)
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Analytical and numerical time-dependent modelling of SSC blazars variability

Now we search a particular solution of the complete non-homogeneous equation L N = Q(t,γ).
The equivalent equation satisfied by the Green function for the differential operator L , is an equa-
tion for a point source (Dirac delta): L G = I ⇒ ∂G(t,t ′,γ,γ ′)

∂ t − ∂

∂γ
(B(t,γ)G(t, t ′,γ,γ ′)) = δ (t −

t ′)δ (γ− γ ′), with B(γ) =−γ̇ =−dγ/dt, and t =−
∫

1/B(ε)dε = t(γ). We proceed resolving such
integral inverting the relation, and using the found characteristic curves γ(t) = γ ′/(1− bγ ′t), be-
cause the injection Q is stationary in this case. Multiply the previous differential equation for the
Green function by the function B(γ), an ordinary differential equation is obtained. This is solved
with a path integral along the characteristic gamma curve, parameterized with the curvilinear coor-

dinate γ = γ(t) obtaining: G(t, t ′,γ,γ ′) = 1
B(γ ′)

+∞∫
−∞

dt B(γ(t))δ (t−t ′)δ (γ(t)−γ ′). Remembering that

B(γ) = bγ2, Q(t,γ) = Q0γ−α , and that the δ (t− t ′) implies t ′ < t, integrating G(t, t ′,γ,γ ′)Q(t ′,γ ′)

in dt ′ and dγ ′ we obtain:
+∞∫
−∞

dγ ′ B(γ(t ′))δ (γ(t ′)− γ ′)Q(γ ′, t ′) = Q0γ ′−(α−2)

γ ′2

t∫
0

dt ′ (1− bγ ′t ′)α−2 =

Q0γ ′−(α+1)

b(α−1)

(
1− (1−bγt)α−1

)
. Finally our total solution of the equation (2.2) without escape term

is:

N(t,γ) = kγ
−(α+1)(1+bγt)−(α+1) +

Q0γ−(α+1)

b(α−1)
(
1− (1−bγt)α−1) . (2.5)

When k = 0 (N(0,γ) = 0) we have

N(t,γ) =
Q0γ−(α+1)

b(α−1)
(
1− (1−bγt)α−1)'{

Q0γ−αt, γ � 1
bt

Q0γ−(α+1)

b(α−1) , γ � 1
bt

, (2.6)

where b = Bsyn+com/γ2 = (4/3)(σT c/mec2)(UB +Urad(t,γ)), corresponding to the solution found
by [7] for coupled processes of cooling and injection.

3. Synchrotron and Synchrotron Self-Compton Spectra

The synchrotron emissivity of a single particles j(ω,E,α) [erg s−1 sr−1 Hz−1], is defined

by: j(ω,E,α) =
√

3e3B
2πmec2 sinα

ω

ωc

∞∫
ω

ωc

dη K 5
3
(η) =

√
3e3B

2πmec2 sinαF
(

ω

ωc

)
, where Ku(η) are the modified

Bessel function (hyperbolic Bessel functions) of order u, defined with pure imaginary argument,

where F(x) = x
∞∫
x

dξ K 5
3
(ξ ), and where ωc = 3γ2eB

2mc sinα = 3
2 γ2ωL sin α = 3

2 γ3ωB sin α is the critical

pulsation. Supposing a completely random (tangled) magnetic field, we can neglect polarization
and use an isotropic emissivity of an electron distribution Jiso(t,ω), as well as the average on the
pitch-angle values α (cosα = v ·B/vB), and on the azimuth angle ϕ values, of the total emissiv-
ity Jhom(ω,α), summed on all the polarizations in an homogeneous and isotropic magnetic field B:

Jiso(t,ω)= 1
4π

2π∫
0

dϕ

π∫
0

dα sinα

(
1

4π

∞∫
0

dE N jiso(ω,E,α)
)

=
√

3e3B
2πmec2

1
4π

∞∫
0

dE N
(

1
2

π∫
0

dα sin2
α F

( 2ϖ

sinα

))
,

where N = N(t,E), ωL = (eB)/(mc) is the Landau pulsation, ωB = ωL/γ the cyclotron pulsation,
and ϖ = ω/(3ωLγ2) the normalized pulsation. This not trivial integral can be handled in several
steps: first integrating by parts in dα; using then a variable substitution cosα = sinhβ/coshβ ;
then solving in the complex domain the integrals containing the Ku(η) Bessel functions (i.e.
∞∫
0

dxcosh(2vx) K2u(2acoshx)= 1
2 Kv+u(a)Kv−u(a) and

∞∫
0

dx Kv±u(2acoshx)cosh [(v∓u)x] = 1
2 Kv(a)Ku(a));
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Analytical and numerical time-dependent modelling of SSC blazars variability

Figure 1: Synchrotron self-Compton (SSC) spectral energy distributions (SEDs) produced by the numerical
code for different changes of parameters (magnetic field intensity B, region size R, maximum Lorentz factor
of the injected electron distribution γmax, minimum Lorentz factor of the injected electron distribution γmin,
energy index of the power law electron distribution injected p, bulk Doppler factor of beaming D).

and using algebraic properties of the Ku(η) functions, i.e. Ku−1(x)−Ku+1(x) = −(2u/x)Ku(x).
After the calculations the resulting single electron emissivity averaged on the pitch angles, to be
convolved with the electron energy distribution N in the isotropic case is:

jiso(ω,γ) =
3
√

3σT cUB

πωL
ϖ

2
(

K 4
3
(ϖ)K 1

3
(ϖ)− 3

5
ϖ

(
K2

4
3
(ϖ)−K2

1
3
(ϖ)

))
, (3.1)

measured in [erg s−1 sr−1 Hz−1]. In our SSC modelling the power law injection Q is defined

in a finite (γmin,γmax) range, thus: Jsyn(t,ω) = 1/(4π)
γmax∫
γmin

dγ N(t,γ) jiso(ω,γ), and the time de-

pendent absorption coefficient is: k(t,ω) = π/(meω)
∞∫
1

dγ
N(t,γ)

γ p
∂

∂γ
(γ p jiso(ω,γ)) [cm−1], with

p = mec
√

γ2−1. For a region of dimension R along the line of sight, the optical depth is τ(t,ω) =
k(t,ω)R, and the self-absorption frequency in which τ(νa) = 1 can be derived, while the inten-
sity is the solution of the radiative transfer equation: Isyn(t,ω) = Jsyn(t,ω)/k(t,ω)

(
1− e−k(t,ω)R

)
,

[erg s−1cm−2sr−1Hz−1].
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Analytical and numerical time-dependent modelling of SSC blazars variability

Figure 2: Left panels: Examples of numerical simulations of time-dependent SED evolution, produced with
the SSC code, after the injection of high energy electrons, as seen in the observer frame. The different SED
shapes are obtained using different combinations of the physical parameters. In all the simulations only the
redshift z = 0.5 and single power–law injection exponentially dumped γ−pec0γ/γmax are used. Continuous
lines represent temporal stages at multiples of tcross = R/c. Right panels: Simulation of light curves (time
in unit of tcross) at different synchrotron frequencies (indicated in log10(ν)). In these plots the crossing time
convolution is not taken into account, and thus the curves do not display a plateau.

Figure 3: Left panel: SEDs of W Com (ON 231, B2 1219+28; z = 0.102) and SSC model fit attempts. The
quasi-simultaneous May 1998 data show an interesting broken (two components) X-ray spectrum observed
by Beppo-SAX. Further 3 models for quasi-simultaneous and not-simultaneous older data of W Com are
also reported. Right panel: SED of PKS 2155-304 (1ES 2155-304; z = 0.116) assembled with observations
available around mid-90s. The solid lines indicate one SSC model fit attempt, and the post-flare cooling
evolution of the November 1997 outburst. High-energy detections in this epoch at X-rays and at γ-ray bands
by EGRET, Mark6 are reported. HESS data obtained in Oct.-Nov.2003 are also added for comparison [1].

The inverse Compton (IC) spectrum is calculated as pure SSC (interaction of electrons with
the isotropic synchrotron photon distribution) integrating the single electron scattering spectrum

over the electron distribution N(t,γ) [2]: J(SSC)
com (t,ν f ) =

νmax
s∫

νmin
s

dνs

γ2∫
γ1

dγN(t,γ) jcom(γ,νs,ν f )Isyn(νs),

[erg s−1cm−3sr−1Hz−1], where: νs is the frequency of the incident synchrotron radiation; ν f is the
frequency of the outgoing radiation, after the IC scattering; N(γ) is the electron distribution in the
emitting region; jcom(γ,νs,ν f ) is the IC emissivity of the single electron,; Isyn(νs) is the intensity

of the incident synchrotron radiation; and γ1 = max
[√

ν f
4νs

,γmin

]
, γ2 = min

[
γmax,

3mec2

4hνs

]
. There

the inverse Compton emissivity of the single electron, (scattering the monochromatic radiation of
frequency νs), is defined as [2, 15]: (N(γ)σT F0)/(4γ2β 2εs) f (εs,ε f ), with f (εs,ε f ) = (1+β ) ε f

εs
−

(1−β ) when 1−β

1+β
6 ε f

εs
6 1; with f (εs,ε f ) = (1 + β )− ε f

εs
(1−β ) when 1 6 ε f

εs
6 1+β

1−β
and with

f (εs,ε f ) = 0 elsewhere (being ε = hν and β = v/c). When the region of dimension R is fully
transparent to the IC frequencies, we can set Icom(t,ν f ) = Jcom(t,ν f )R.

6
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Analytical and numerical time-dependent modelling of SSC blazars variability

The total spectrum of the synchrotron and the inverse Comtpon radiation is: Itot(t,ν) =
Isyn(t,ν) + Icom(t,ν) and the luminosity (bolometric power) L(t,ν) = (16π2/3)R2Itot(t,ν). The
observed quantities corrected for the relativistic beaming and cosmological effects are: νobs = Dν ,
Lobs(t,νobs) = (D/(1+ z))3 L(t,ν), where D is the bulk Doppler beaming factor.

4. The numerical implementation

The algorithm for the solution of the time-dependent kinetic equation consists of a direct
method resolving the equivalent system of algebraic discretized equations obtained with a one step
finite difference scheme. We used the fast and robust semi-implicit conservative scheme of [4],
improved by [11]. This numerical method is the best compromise between functionality, stability
and accuracy. Intervals ∆t and ∆γ of the two-dimensional mesh representing the electron num-
ber density function N(t,γ), can be rather broad, and the semi-implicit method provides accurate
time-dependent solutions (and non-negativity of solutions). The energy (γ factor) has a logarithmic
equally spaced mesh, while the time a linear mesh. After the solving of the equation, at every
discrete time step the synchrotron emissivity and intensity, the IC (SSC) intensity, and the total
intensity and luminosity are calculated based on the analytical formulations summarized in the
previous sections. Beaming effects are then evaluated as well. Examples of some SEDs produced
by our SSC code are reported in Fig.1, 2 and 3.
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