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A precision measurement of the cosmic-ray positron spectrum may help to solve the puzzle of the
nature of dark matter. Pairwise annihilation of neutralinos, predicted by some supersymmetric
extensions to the standard model of particle physics, may leave a distinct feature in the cosmic-
ray positron spectrum.
As the available data are limited both in terms of statistics and energy range, we are develop-
ing a balloon-borne detector (PEBS) with a large acceptance of 4000cm2 sr. A superconducting
magnet creating a field of 0.8T and a tracking device consisting of scintillating fibers of 250 µm
diameter with silicon photomultiplier readout will allow rigidity and charge determination to en-
ergies above 100GeV. The dominant proton background is suppressed by the combination of an
electromagnetic calorimeter and a transition radiation detector consisting of fleece layers inter-
spersed with straw-tube proportional counters. The calorimeter uses a sandwich of tungsten and
scintillating fibers that are again read out by silicon photomultipliers.
The design study, based on a detailed Geant4 simulation and testbeam measurements, will be
presented along with an interpretation of the currently available positron data in the context of the
mSUGRA model. The constraints that future precise measurements could put on this model will
be discussed.
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1. Detector design

As an experiment designed to measure the positron component in the cosmic rays with high
precision, the Positron-Electron-Balloon-Spectrometer (PEBS) has to meet several crucial require-
ments: First of all, the geometric acceptance needs to be large due to the small flux of positrons.
A clean positron sample can only be obtained if a suppression of the predominant proton back-
ground on the level of one in one million is achieved. In addition, a good momentum resolution
is necessary for charge sign determination and subsequent electron suppression. The design study
presented here is based on a full simulation of the behavior of the experiment using the Geant4
package[1]. In addition, key elements have been verified in a series of testbeams at CERN over the
years 2006-2008.

PEBS (fig. 1 (left)) has been designed to meet the requirements stated above. A magnetic
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Figure 1: Left: Cut-out mechanical drawing of the PEBS detector. Right: Weighted mean of the positron
fraction data from AMS-01[5, 6], HEAT[7], CAPRICE[8], and TS93[9], together with the secondary back-
ground as predicted by the Galprop[10] conventional model. The uncertainty band for the Galprop model
was obtained from a variation of model parameters within the bounds allowed by the B/C data and the
positron fraction data below 3GeV. The statistical uncertainties achievable with a detector that has a geo-
metric acceptance of 0.4m2 sr and measures for 100 days are projected for the positron and electron fluxes of
a dark matter scenario with an mSUGRA neutralino (m0 = 1560GeV, m1/2 = 260GeV, tanβ = 40, A0 = 0
and sgnµ = +1) on top of the secondary backgrounds. A boost factor of 150 is used for the signal fluxes,
chosen to give the best fit to the presently available data. DarkSUSY4.1[11] has been used for the calculation
of the signal fluxes.

field of mean flux density B = 0.8T and mean BL2 = 0.62Tm2 is created by two superconducting
Helmholtz coils, located inside a helium cryostat. The curvature of a charged particle’s trajectory
in this field is measured by a scintillating fiber tracker with silicon photomultiplier readout[12]. A
transition radiation detector (TRD), located between the tracker super-layers, and an electromag-
netic calorimeter (ECAL) at the bottom of the experiment provide rejection power against protons.
Scintillator panels above and below the tracker act as a time-of-flight system (TOF) and are used
for triggering purposes.
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Earth’s atmosphere prohibits a measurement of GeV-range cosmic rays on the ground. While
space experiments have the undisputed virtue of being able to measure the spectra of cosmic rays
completely undisturbed by the atmosphere, scientific high-altitude balloons constitute an interest-
ing alternative for several reasons. The experiment can be salvaged after the flight and be recali-
brated, refitted and eventually repeated for the gradual improvement of the statistical accuracy, and
it can be conducted at a much lower cost. Mission durations of up to 40 days have been reached by
traveling with the circular arctic winds around the North or South Pole[2]. The amount of helium
carried for cooling the superconducting magnet will be sufficient for such a measurement time.

The geometric acceptance of the detector is limited by the weight and power constraints im-
posed by the carrier system. The most important contributions to the overall weight are the magnet
weight and the weight of the calorimeter with 850kg and 600kg, respectively. The power con-
sumption is dominated by the 300W needed for the tracker which has roughly 55000 individual
readout channels.

The tracker has an aperture of 86× 86cm2 and a length of 80.6cm. From the positions and
dimensions of all the sensitive areas of the subdetectors, the geometric acceptance of PEBS is cal-
culated to be 0.4m2 sr.

The tracking device will consist of scintillating fibers grouped into modules and read out by
linear silicon photomultiplier arrays (SiPMs). A module comprises two stacks of round fibers of
250 µm diameter, 128 fibers wide and five fibers high, glued together in the tightest arrangement.
The stacks are held apart by two carbon fiber skins with Rohacell foam in between. Using scintil-
lating fibers, the material budget in the particles’ flight path through the tracker does not exceed 6%
of a radiation length, while the TRD will contribute another 6%. The modules will be grouped into
eight layers, two of those being located at the entrance and exit of the tracking device, respectively,
and four in the center.

Silicon photomultipliers[3] have the virtues of being insensitive to magnetic fields, having
high quantum efficiency, as well as compactness and auto-calibration. They will therefore be used
to detect the photons trapped in the scintillating fibers and will be read out by a dedicated VA chip.
Linear arrays containing 32 silicon photomultiplier columns each are located at alternating ends of
the fiber bundles. The remaining end of each fiber is covered by a reflective coating to increase
the light yield by a factor of roughly 1.6. Five fibers in one column are then optically connected
to one SiPM column. The weighted cluster mean from amplitudes in adjacent SiPMs columns will
be calculated to pinpoint the intersection of a trajectory with a fiber module.

A prototype of a tracker module has been subjected to a 10GeV proton testbeam at the
CERN T9 beamline. The measured light yield of 11 photo electrons per MIP crossing was used
as input to the PEBS Monte Carlo simulation. A momentum resolution of 16% is predicted for
100GeV protons in this case.

A sandwich calorimeter for three-dimensional shower reconstruction has been designed to
provide rejection power against the predominant proton component in the cosmic rays. It comprises
20 layers consisting of 2mm tungsten interleaved with layers of scintillator bars of 2mm height and
7.75mm width. They are read out by individual SiPMs of 1×1mm2 area which are sitting in front
of wavelength-shifting fibers embedded in the scintillator bars on both ends. Attenuation is used on

3



P
o
S
(
i
d
m
2
0
0
8
)
0
2
3

PEBS Henning Gast

one side to increase the dynamic range. Five layers are grouped into a super-layer and four super-
layers are placed with alternating direction. The total depth of the calorimeter is 11.4 radiation
lengths.

A preliminary cut-based analysis, using the PEBS Geant4 simulation, has been performed
to study the proton rejection of this setup. For each event, a shower fit using a standard Gamma
function parameterization has been performed and the following variables have been used to distin-
guish positrons from protons: E/p-match, total shower amplitude, fitted shower maximum, ratio of
shower energy within one Molière radius from the shower axis and angle between the reconstructed
track and shower axis.

Proton rejections of the order of 1000 can easily be achieved already with this rather coarse
method. The corresponding electron efficiency is around 75%.

The design of the transition radiation detector is based on the one constructed for the AMS-02
experiment on the International Space Station[4]. The TR x-ray photons are generated in a 2cm
thick irregular fleece radiator made of polyethylene and polypropylene. They are subsequently
detected in proportional wire chambers in the form of straw tubes made of aluminized kapton foils
which have an inner diameter of 6mm and are filled with an 80 : 20 mixture of Xe/CO2. The straw
tubes are grouped into modules and eight layers each are placed in the gaps above and below the
central tracking layers. The proton rejection yielded by the TRD reaches a value of 1000 at 80%
electron efficiency in the interesting energy range.

2. Performance study

Detailed performance studies using both Monte Carlo and testbeam data have been conducted.
As the ECAL and the TRD measure independently, their combined proton rejection power can be
expected to be as high as one in one million. The large acceptance, good momentum resolution
and reliable proton suppression of PEBS would allow a precision measurement of the cosmic-ray
positron fraction (fig. 1 (right)) up to energies above 100GeV.

As an example for the physics performance to be expected from PEBS, a scan of the mSUGRA
parameter space was conducted. For the case that mSUGRA is realized in nature and the neutralino
contained in this model constitutes the dark matter, the signal fluxes Φsig(e±) for positrons and
electrons resulting from neutralino annihilations in the Galactic halo were calculated using Dark-
SUSY 4.1[11]. The model fluxes were calculated as the sum of the background fluxes Φbg(e±),
taken from the conventional Galprop model[13], and the boosted signal fluxes:

Φmodel(e±) = Φbg(e±)+ fb ·Φsig(e±) (2.1)

The boost factor fb in equation (2.1) was used as the only free parameter in a fit of the resulting
positron fraction for a given point in mSUGRA parameter space to the weighted mean of the
currently available data (fig. 1). The resulting contour of the best-fit χ 2 is essentially flat over vast
amounts of the parameter space (fig. 2 left). This situation can be expected to change drastically
with the arrival of data from PEBS. For the benchmark model given in the caption of fig. 1, random
data for an experiment with the acceptance of PEBS and a measurement time of 100 days were

4



P
o
S
(
i
d
m
2
0
0
8
)
0
2
3

PEBS Henning Gast

 / GeV
1/2

m

0 200 400 600 800 1000 1200 14001600 1800 2000

 /
 G

e
V

0
 m

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2

4

6

8

10

12

14

16

18

20

 / GeV1/2m
240 250 260 270 280 290 300 310 320

 /
 G

e
V

0
m

1450

1500

1550

1600

1650

1700

1750

sr)2PEBS (100 days, 0.4 m

sr)2AMS02 (3 years, 0.06 m

sr)2PAMELA (3 years, 0.002 m

99% CL

Figure 2: Left: χ2-contour as described in the text, for the weighted mean of the currently available positron
fraction data. Right: Projected 99% CL-contour for the statistical accuracy to be expected from PEBS, as
compared to PAMELA and AMS-02, for the benchmark point used in fig. 1 (right), in the m1/2-m0-plane,
for fixed tanβ = 40. Note the different scales.

generated and the procedure described above was repeated. Now, the χ 2-contour (fig. 2 right) has
a distinct minimum at the benchmark point. In this model and at this level of statistical accuracy,
the corresponding resolution of the neutralino mass would be limited by the energy resolution of
the calorimeter which is expected to be on the order of 7% at 100GeV.
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