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Adopting Dirac’s brane variation prescription, the energy-momentum tensor of a brane gets sup-
plemented by a geometrical (embedding originated) dark component. While the masslessness
of the graviton is preserved, and the Newton force law is recovered, the corresponding Newton
constant is necessarily lower than the one which governs FRW cosmology. This has the potential
to puzzle out cosmological dark matter, a subsequent conjecture concerning galactic dark matter
follows.
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1. Introduction

Recently the idea that brane theories[1] could accommodate the dark matter phenomenon was
suggested [2]. Brane theories, have recently made great breakthroughs in the area of reproducing
some results of general relativity, on the cosmic scale as well as the regular Newton potential [3].
Since brane theories originated to solve the puzzle of quantum gravity by allowing the existence
of extra-dimensions, the possibility that they can naturally produce a solution to a seemingly un-
related problem in gravity will generate a great boost in the theory asides from being a significant
achievement and a good verification of the branes and extra-dimensions ideas.

Despite the recent progress, there is no natural theoretical framework for dark matter. We will
try the approach of unified brane gravity [4], following Dirac’s prescription of careful variation in
the region of the brane[5].

2. General Perturbations and the Graviton

We begin with the simplest scenario of a positive tension 4-dimensional flat brane embedded
in 5-dimensional AdS bulk

ds2
5 = dy2 + e−2b|y|

ηµνdxµdxν . (2.1)

b−1 =
√
−6/Λ5 denotes the AdS scale, ηµν is the 4-dimensional Minkowski metric, and the brane

is conveniently located at y = 0. Before turning to the main discussion concerning perturbations
of this brane, it is imperative to understand the full potential of the unperturbed brane. In the
conventional RS (Randall-Sundrum), DGP (Dvali-Gabadadze-Porrati) and CH (Collins-Holdom)
scenarios, in order to ensure its flatness, the brane has to be of positive (or negative) tension

σ =
3b

4πG5
. (2.2)

Unified brane gravity (UBG), although requires the same, allows for one more degree of freedom.
To see the point, first recall that the UBG field equations are given by

1
4πG5

(
Kµν −gµνK

)
=

3b
4πG5

gµν +
1

8πG4

(
Rµν −

1
2

gµνR
)

+Tµν +λµν . (2.3)

In addition to the familiar terms (namely, the Israel junction term, the brane surface tension, the
Einstein tensor associated with the scalar curvature R4, and the physical energy-momentum tensor
Tµν = δLmatter/δgµν of the brane), UBG introduces λµν . The latter consists of Lagrange multi-
pliers associated with the fundamental induced metric constraint gµν(x) = gMN(y(x))yM

,µyN
,ν . In the

above field equations, λµν serves as a geometrical (embedding originated) contribution to the total
energy-momentum tensor of the brane. λµν is furthermore conserved, and its contraction with the
extrinsic curvature vanishes

λ
µν

;ν = 0 , λµνKµν = 0 . (2.4)

By choosing λµν = 0, which is a viable choice, one approaches the conventional DGP(CH) limit.
For a flat brane embedded in a 5-dimensional AdS background, which is the special case of interest,
Kµν =−bηµν . In turn, eq.(2.4) simply implies that the corresponding λµν is traceless. A traceless
and conserved source serves as an effective (positive or negative) radiation term. The flatness of
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the unperturbed brane can be achieved, the conventional way, if the energy-momentum and the
embedding terms both vanish, that is Tµν = λµν = 0. But now there exists the milder option
Tµν + λµν = 0. Following the above, if (and only if) the real matter on the brane exclusively
consists of radiation, one can choose an appropriate λµν to cancel it out. To be more specific, let
our unperturbed flat brane host a constant radiation density ρ , and choose the embedding counter
term to be λ 0

µν =−T 0,rad
µν =−diag

(
ρ, 1

3 ρ, 1
3 ρ, 1

3 ρ
)
. Reflecting the peculiarity that a flat brane can

in fact be hot, which is unique to UBG, the perturbations are expected to be quite different from
those around a DGP brane, thus giving rise to new physics. Since for a general perturbation, δKµν

is not proportional to hµν , the term

sµν ≡ λµν +T rad
µν = δλµν +δT rad

µν (2.5)

is not necessarily zero. One can furthermore verify that sµν is conserved, and not necessarily
traceless

s≡ η
µνsµν =

1
2b

λ
0
µν

(
∂

∂ |y|
+2b

)
hµν . (2.6)

The non-localized part of the perturbation equations is the same as the familiar RS case, since the
bulk still follows the normal 5-dimensional Einstein equations(

∂ 2

∂ |y|2
−4b2 + e2b|y| 4

)
hµν = 0, (2.7)

where 4 ≡ ηµν∂µ∂ν is the 4-dimensional (unperturbed) d’Alembertian. The localized part of the
equation is

δ (y)
[

1
8πG5

(
∂

∂ |y|
+2b

)
+

1
8πG4

4

]
hµν = δ (y)

(
τµν + sµν

)
. (2.8)

The propagation of modes into the bulk remains the same as in all the familiar cases. Thus, we
will only be focusing on the perturbations on the brane. expanding the solution into bulk mass
modes, hµν = A(y)h̄µν (xµ), where we normalize without loss of generality A(0) = 1 and define

α = 1+
1

2b
A′(0). Next let us separate the perturbation, h̄µν = h(m)

µν + h(u)
µν , to the standard term

h(m)
µν , which follows the usual brane equation and thus admits the familiar solutions and the new

term h(u)
µν , which is a direct result of the additional effective source sµν . Unfortunately we cannot

find a general Green function to eq.(2.8,2.7), because there is no closed form to express sµν in term
of h(u)

µν . To that end, the only general prescription to solve these equations is perturbatively in ρ .
when expanding the cosmological equations around a flat background with positive tension and
radiation density ρ , we get the FRW equation for the brane,

δρ =

(
1

8πG4
+

√
6
−Λ5

(
1

8πG5
+

ρ

6b

))
ε , (2.9)

where ε = 3
ȧ2 + k

a2 and therefore, the corresponding Newton constant is,

1
Gc

N
=

1
GCH

+
4πρ

3b2 . (2.10)
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Where the c stands for cosmological and GCH is the Newton constant that corresponds to the CH
scenario,

1
GCH

=
1

G4
+

1
GRS

, (2.11)

where GRS = bG5.

3. Static Radial Source and Dark Matter

For the radial case we can write the equation for h(u)

κ
2
4 rh(u)′′′+4κ

2
4 h(u)′′+

(
2κ2

4
r

+
(

k− 2
3

αρ

)
r
)

h(u)′+2kh(u) =−4GCHMαρ

3r
, (3.1)

where M is the mass of the physical source, κ
2
4 ≡

3
16πG4

and k ≡ αb2

2πGRS
. The solution for the full

perturbation yields h̄µν = h(m)
µν +h(u)

µν is therefore

h̄tt = h̄rr =
1

1+
4πGRSρ

3b2

2GCHM
r

, (3.2)

It is important to note that it is only due to the solution being independent of α that we can proceed
without integrating over all the mass modes. The Newton potential is thus recovered, giving us
further reassuring that the graviton is indeed massless, since a mass term in the propagator would
have to have generated an exponential decay. The Newton constant associated with the solution is

Gr
N =

GCH

1+
4πGRSρ

3b2

(3.3)

where the r index stands for radial.

Now that the mathematics has been understood, we return to physics. Alone, eq.(3.3) has
nothing new to offer. However, if we compare the cosmological and radial result, we see that the
Newton constants differ and we need to see, how significant is this difference. First of all since we
do have bounds on b both from particle and gravitational localization, we can clearly state that the
term ρ

b2 is negligible in both equations. This means that Gc
N = GCH , whereas,

1
Gr

N
=

1
Gc

N
+

4πρ

3b2
GRS

G4
. (3.4)

The last term in the radial gravitational constant would have been negligible if not for the factor
GRS

G4
. We have no experimental or theoretical bounds on the latter ratio. In fact the proposed self

accelerated DGP solution for the cosmological constant, requires this quantity to be very large.
If it is large enough, then this term can be significant in the calculation of the Newton constant.
Thus, in principle we have a real difference between the cosmological and the radial gravitational
constant. The radial constant being necessarily lower. However, historically, the Newton constant
was measured in radial systems (solar system). And thus an observer that is unfamiliar with this
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physics, would interpret this effective growth of the gravitational constant as missing cosmological
mass (since in general relativity, mass is inseparable from the gravitational constant). Thus bringing
him to the phenomenon of cosmological dark matter, without facing dark matter in the solar system.

When solving the perturbation equation in cosmic background, one expects the two branches
of the solution, one being the Gr

N and the other Gc
N to be connected, creating some sort of transition

between them. Such transition, to an unaware observer, will seem as a gradual increase of mass,
that may result in flat rotation curves (FRC). Although the exact solution to fluctuations around a
cosmological brane is highly complex. We can give a rough estimate to the typical scale of such a
transition, thus formulating our conjecture. We assume the scale to be roughly in the region where
cosmological and radial curvatures are of the same order of magnitude, so that cosmology and
radial solutions "mix". The radial curvature is of the order

rs

r3 , rs being the Schwarzschild radius

and the cosmological is of the order of H2, H being the Hubble constant. The scale of the predicted
FRC is therefore

rFRC ∼
(
rst2

Hubble
)1/3

∝ M1/3, (3.5)

where tHubble is the age of the universe. When this scale is calculated for the sun, the result is 100
ly, which is way beyond the scale of the solar system. At these distances, other stars contribute and
thus the effect is unmeasurable today. For a galactic mass on the other hand the result is of the order
of 105 light years, which is only one order of magnitude higher than the real galactic scale. One
needs to remember that it is only a rough estimate and also that galaxies are composed of many
stars, each giving an effect on the scale of about 100 ly, so that the combined effect may be closer
that the above result, to give the exact scale of FRC.
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