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The missing of a Keplerian fall-off in the observed galaxyatmn curves represents classical
evidence for the existence of dark matter on galactic scalesre has been some recent activity
concerning the potential of modelling galactic systemslie help of general relativity. This
was motivated by claims that by the use of full general reilgtdark matter could be made super-
fluous. Here we focus on possible axisymmetric and statjos@lutions of Einstein’s equations
with rotating dust. After a small review of the current debate pursue the idea of approaching
such relativistic models in a Newtonian language. We amaligidly as well as differentially
rotating Newtonian and Post-Newtonian spacetimes and liaidittis necessary to incorporate a
Post-Newtonian form in order to meet consistency and majsipal sense.
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1. Motivation

The evidence for dark matter stems from various obsenatatrvarious scales but it is not
necessary that the effects have all the same origin. Thisrgapnotivated by the galactic dark
matter problem: in contrasto the expectation from Newtonian dynamics the tangenéoities
of spirals are found to be approximately flat and not decngaisp to large radii.

The standard resolution lies in postulating a large haloavk anatter around galaxies. In
contrast to this Cooperstock and Tieu (CT) recently suggetstat the proper modelling of a galaxy
through full general relativity (GR) explains the findinggttvout dark matter [2]. Their galaxy
model is a stationary axisymmetric (comoving dust) sotuthased upon the following metric

ds’ = &' (dr? +dZ) +r2e "dg? — & (dt + Ndg)* . (1.1)

Even though fields and velocities in the galaxy are smalpaticg to CT, the Newtonian approxi-
mation would not be valid for a galactic system that is untderihfluence of gravity alone because
of intrinsic non-linear contributions of non-negligiblezs from GR. The GR model would then
be able to reproduce realistic density profiles after fitflagrotation curves. The according total
galactic mass comes out of modest value, c.f. [2], that idlemian the newtonianly required
value and larger than values from Modified Newtonian DynanilMdOND).

By now various authors have pointed to problems with theisterscy of the CT model. In [3]
the Komar mass within the CT model is analysed and it is fobatithe energy momentum tensor
becomes ill-behaved at= 0, revealing the existence of an additional exotic mattarca Thus, in
the CT model, the location of exotic matter would only be $fared to the galactic plane, a finding
also supported in in [4]. In [5] it is argued that Post-New#oncorrections should already enfold
non-linear effects if they are present and that correctstimuild intrinsically be small in the weak
field limit. In [6] an inconsistency between the CT comovingrnfie and the condition of differential
rotation is revealed; if the inconsistency is removed thation curve became ordinarily Keplerian.
It is argued in [7] that the CT model gives wrong predictioasthe lateral density profile of the
Milky Way and for its local density. On the other hand, in [Bis found that the CT model seems
to hide infinite mass at large distances. Generally it is show{9] that interior stationary and
axisymmetric solutions - like CT - cannot be continued intocading exterior solutions in order
to become global solutions without evoking singularities.

Itis interesting to note that viable disk models for galkasiistems with differential rotation do
not exist in GR by now. For the case of rigid rotation [10] aaebsolution is known which has been
obtained via the inverse scattering method; already itmdtation is technically rather elaborate.
Though problematic, the CT hypothesis has initiated furdigernative ideas on galactic rotation
curves. Using a similar GR model in [11] it is found that thecamt of dark matter needed is
reduced by 30%. In [12] an axisymmetric disk solution of thesEein equations in six dimensions
is constructed. The modification of gravity via extra dimens then leads to flat rotation curves if
orbits within the disk are to be stable.

Here we want to compare the CT model with a rotating (PostvwtNieian model. For this we
first have to ask some general questions on axially symmeatdcstationary solutions in GR.

1In Newtonian gravity a flat rotation curve is possible, seestdks disk [1]. But the price is an infinite total mass.



General Relativistic Rotation Curves in a Post-Newtoniaght Aleksandar Raki

2. Rotating (Post-) Newtonian Spacetimes

In notation(x?,x*,x?,x3) = (t,r, ¢,2) and signaturé—, +, +, +) the most general axisymmet-
ric (dp9uv = 0) and stationary(d g,y = 0) spacetime in GR with the four free metric functions
U (r,z),k(r,z),W(r,z),A(r,z) is named after Lewis and Papapetrou (LP) and reads [13]

ds? = eV |&(dr? +dZ) + W2d¢?| — e (dt + Adg)?. (2.1)

We can simplify (2.1) a bit more, but only under crucial asptions. If and only if the metric
functionW is harmonic it can be transformed\té = r. Consider a complex coordinate transfor-
mation f (r +iz) =W+ 1V introducing an additional potenti®. Then we have fronp =W(r,2)
andh = V(r,2) the differentials ¢ = S¥dr + 2¥dz and dh = 4’ dr + 4Ldz. After inserting into
(2.1), written in terms op, h, and requiring formal invariance as compared to the orlgimatric
we see that the mixing terms have to vanish. That is exactyiged by the Cauchy-Riemann
equations foW andV: 2% = 2% and 2% = — 2% Moreover, with the help of these equations, we
see that the coefficients ofdand & can be combined and so we reobtain (2.1).

Thus we have shown that it is possible to simplify the genkeRalform (2.1) by allowing
W = r, which is only possible iV (andV) be harmoni&: A@W = 0. Upon this constraint we can

write down the LP metric in isotropic coordinates (or Weyliga)
42 — e [eZk(dr2+dzz)+r2d¢2 — &M (dt + Adg)2. 2.2)

The spacetime applied in the CT model was (1.1). ObvioustyGT metric does not belong to the
class of the most general stationary and axisymmetric §pae® it only belongs to the subclass
of LP solutions in the Weyl gauge, and is therefore less gdner

Now we ask what solution could potentially be a Newtonianterpart to the CT model (1.1).
The ‘Newtonian approximation’[14] that is the metric theproduces Newtonian physics is

ds? = — (14 2¢)dt? + dr? +r2d¢? + dZ, (2.3)

where ¢ = ¢(r,2) is the Newtonian gravitational potential. For simplicitye start with rigid
rotation in (2.3) viap = ¢’ — wt andw =const. The exact result can be brought to the form

2

do| . (2.4)

r2e
(1+2¢— w?r?)

1+2¢
In this form we can directly compare it with the LP metric in YWgauge (2.2), and we notice a
discrepancy at linear order ip, looking at the @2 term. Interestingly, the rigidly rotated Newton
metric (2.4) is not consistent with the Weyl subclass of tResblution (2.2).

One could now ask whether the situation might be easily cuiiithe help of a coordinate
transformation. We show that this is not possible. Above waeehderived the exact conditions
under which the general and the isotropic LP metric can bestoamed into each other, that is the
function W must fulfil the two-dimensional Laplace equatiAff’W = 0. In the case of (2.4) we
identify W =r,/1+ 2¢. Expanding to linear order and applying the Laplacian weld

ds? = (dr®+dZ) + r?dp? — (1+ 29— w?r?) |dt +

APW =rA® g+ ¢, = 4nGpr + @; (2.5)

2This condition foAW holds for exterior (vacuum) solutions that are stationamy axisymmetric, c.f. [15, 13].
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after using the Poisson equation. We will now show &t does not vanish in general.

Given the general problem of solving the Laplace equatioth Wie appropriate boundary
conditions for a disk-like distribution of matter, the stdun for the potential can be obtained via
separation of variablesp(r,z) = [;° S(k)Jo(kr)e ¥ dk [16]. A given surface mass densiE(r) is
then characterised by its Hankel transfogk) = —2nG [, Jo(kr)Z(r)rdr. Now we can use these
expressions for the evaluation of (2.5).

Case (I)z# 0. Outside the disk the Newtonian potential fulfils the Laplaquation, such that
(2.5) becomeA@W = — [5° S(k)J; (kr)ke Z dk which will not vanish in general. We demonstrate
this e.g. with the Mestel model [1] which is characterisedalgurface mass density that falls off
inversely with the distanc&(r) = Zoro/r and Hankel-transforms &Kk) = —2nGZro/k. Using
this we can integrate and obta?W = 2nGZrg (% — rw';lﬁ) atz#£0.

Case (II)z= 0. We want to show that (2.5) is non-zero also here. Let usnassie contrary
and see what happens. If we assume & = 0 was true then equation (2.5) gives an identity.
This we integrate ovez for somee > 0 and then revoke the operation with the appropriate limit,
—4nGrlimg_o [*,8(2)Z(r)dz = lims_o [%, [ S(k)J1(kr)ke X2 dkdz. Since the exponential term
on the right hand side serves as a damping factor, the moaddltlse integrand will reach its
maximum atz = 0. Thus, as an upper estimate, we can set the integrand dfjtitchend side to
be constant irz and therefore the integration and limit procedure give zdioen, for all otherz
the expression will be zero more than ever and we has@>4r)r = 0: this will not hold generally
for any realistic model, hence producing a contradiction] thereforeA?W(r,z) = 0 is not true
at the surface = 0 either.

Notably, the classical Newton metric (2.3) cannot be madepatible with the LP metric in
Weyl form and is thus also not compatible with the CT modéd.should go one step further and
consider the Post-Newtoni&(PN) metric with an additional PN potentig = ((r,2),

ds? = —(1+2)dt? + (1— 2y) (dr? +r2d¢? + d2) . (2.6)

To include one more complication we consider thiferential rotation of this metric viaw =
w(r,z) and arrive at a lengthy expression. Unfortunately, theltiegumetric exhibits direct time
dependence in some coefficients and is therefore only rabkoin a strictly local sense. To
preserve stationarity we approximate it by allowing fonyosinall time intervals or equivalently for
small angles of rotation. Further we find that for the simipis case, i.e¢ = /, the differentially
(and the rigidly) rotated metric is consistent - neglectieigns© (¢?) - with the Weyl form (2.2).

3. Summary and Conclusion

Up to day, there does not exist an intuitive and applicablesBRtion which could help to
realistically model a galactic system - except for the cacapéd solution [10] with stiff rotation.
CT have proposed a solution but as we have seen argumentsdrayas directions have revealed

3Sometimes, this metric witly = @ is referred to as the ‘Newton metric’ in the literature. Tleason for this
nomenclature might be that the order of magnitude of theficiedt of the spatial part and the order of the Newtonian
correction are the same. However, conceptually this makessiderable difference. In classical Newton Gravity ¢her
exists no curvature of space, the three-space is alwayslieunc| This is exactly reflected in the Newton metric (2.3)lan
therefore we refer to (2.6) as the PN approximation; for aaresive discussion see e.g. chp. 39 of [14].
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unphysical features in the model. We have shown that the QifiGo does not belong to the class
of the most general axially symmetric and stationary sohdj the LP class. Therefore the CT
solution is less general and this restriction might be cotatewith the problems of the model.

A more intuitive understanding of the CT model and its breaka would be instructive.
For this we approached the CT model by Newtonian means. Welfthe interesting result that
the classical Newton metric after rotation does not lie i same class as the CT metric but is
more general and cannot be simplified. Only the incorpanatiba PN potential gives rise - after
differential or rigid rotation - to equivalent metrics. Ththe proper weak field limit of such a
galaxy must be Post-Newtonian. A complete analysis of theltiag dynamics via the Arnowitt-
Deser-Misner formalism is the concluding step and is goiniget published elsewhere.

This work was supported by the DFG under grants GRK 881 and GRK.
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