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proach to a class of quantum field theories. This approach is based on rewriting the partition

function in a representation similar to the world-line representation and hence we shall call it the

“WL-approach”. This approach is likely to be more powerful than the conventional approach in

some regions of parameter space, especially in the presenceof chemical potentials or massless

fermions. While world-line representations are natural in the Hamiltonian formulation, they can

also be constructed directly in Euclidean space. We first describe the approach and its advantages

by considering the classical XY model in the presence of a chemical potential. We then argue that,

CPN−1 models, models of pions on the lattice and the lattice massless Thirring model, can all be

formulated and solved using the WL-approach. In particular,we discover that the WL-approach

to the Thirring model leads to a novel determinantal Monte-Carlo algorithm which we call the
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1. Introduction

Monte Carlo methods have tremendously improved our understanding of a variety of strongly
interacting quantum field theories. Beginning with the discovery of “cluster algorithms” for clas-
sical spin systems [1, 2], and the “loop algorithms” for quantum spin systems[3] the search for
efficient algorithms has been an important area of research over the past two decades. Although
many algorithmic improvements have been achieved for QCD-like problems [4],it has been espe-
cially difficult to find good algorithms for lattice field theory problems in the presence of a chemical
potential or when the microscopic theory contains strongly interacting massless fermions. How-
ever, recently the landscape has begun to change somewhat. The progress over the past decade,
especially in studies of quantum spin systems and strong coupling lattice gaugetheories, suggests
the existence of a new approach to a class of lattice field theories. In this talk Iwill outline the
ideas behind the new approach by discussing a few examples.

One essential feature of the new approach is to formulate lattice field theoriesin representa-
tions that are similar to the world-line representation. Such representations arise naturally in the
Hamiltonian formulation but are not usually used in the Lagrangian formulation.As we will see
below, they also arise naturally in Euclidean lattice field theory when one thinksabout the strong
coupling (or high temperature) expansions. In certain cases the representations are indeed the well-
known world-line representations, in others they look different but share many properties of the
world line representations. For this reason we will refer to the new approach generically as the
“WL-approach”. As we will see below one of the advantages of the world-line representations is
that there are no new sign problems because of adding a chemical potentialunlike the conventional
approach. On the other hand, the world-line representations are not friendly for local Monte Carlo
methods due to the presence of constraints. The loop cluster algorithm was the first successful
algorithm that was able solve the constrained problem efficiently. However, this algorithm was
rather restrictive and it was difficult to maintain the efficiency in the presence of different types of
couplings especially with a chemical potential. Recently, it was realized that theloop algorithm
is just one example of a more general class of algorithms referred to as “worm algorithms” [5] or
“directed-loop algorithms” [6] or “directed-path algorithm” [7]. We will refer to these slightly dif-
ferent algorithms together as “worm-algorithms” based on the pioneering work of the first authors
Prokofév and Svustinov. These algorithms introduce a defect in the constraints and sample the de-
fect space until the defect naturally eliminates itself. The sampled defect space is itself a measure
of the two point correlation function. When combined with the worm-algorithm, theWL-approach
to lattice field theories have been found to be as efficient as the original cluster algorithms for clas-
sical spin models [5, 8]. On the other hand the WL-approach seem to be more widely applicable.
As we will discuss below, the worm-algorithm can in principle be applied toCPN−1 models which
cannot be solved using the conventional cluster algorithms.

As with any Monte-Carlo method, the WL-approach can fail due to sign problems. Sign
problems can arise due to frustrating interactions or in the presence of fermions. In two dimensions
fermionic sign problems can sometimes be solved in the world line representation since fermions
resemble hard-core bosons [9, 10]. Thus, WL-approach should beapplicable to these problems.
Solutions to fermionic sign problems also emerge in strongly coupled lattice gaugetheories with
staggered fermions. In this case configurations naturally resemble world-line representations where
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fermions are confined into bosons. When combined with the efficient directed-path algorithm [7]
this provides a new and powerful WL-approach for some scalar field theories which include those
that are invariant under symmetries likeSU(2)×U(1) andSU(2)× SU(2)×U(1) [27, 25, 24].
These theories, which are of interest in the context of understanding QCD-like theories, could not
be solved efficiently with conventional approaches.

In higher dimensions solving fermionic sign problems is difficult, however the WL-approach
suggests new solutions in many cases [11, 12, 13, 14]. If the sign problems can be solved in the
WL-approach, then one can combine worm-algorithms with other conventionalalgorithms to solve
the problem. Below we will discuss one such algorithm for the massless lattice Thirring model in
any dimension. In the WL-approach the partition function is rewritten such that it resembles the
well known bag-model of QCD where the bags are dynamically determined objects. Inside the bag
the fermions are free, while outside they are confined. For this reason wecall this new fermion
algorithm the “dynamical-bag algorithm”.

The basic ideas of the WL-approach are also applicable to gauge theories. Here one needs to
rewrite the problem in a representation of world-sheets giving us a new “WS-approach” where a
worm-type algorithm involves cutting and reconnecting world sheets. Although very little is known
about these surface-cluster algorithms, the ideas seem promising. Below we will show some results
which suggest that it may be possible to measure large Wilson loops with little effort in the confined
phase in Abelian lattice gauge theory using a WS-approach.

2. World-Line Approach: XY Model with a Chemical Potential

In this section we will illustrate the WL-approach using the example of the XY model. To
make things interesting we will introduce a chemical potential that couples to theU(1) charge of
the particles. We begin with the action of the lattice field theory, in the conventional formulation,
which is given by

S = −β ∑
x,α

{

cos
(

[φx −φx+α ]− iµδα,t

)

}

(2.1)

wherex is a point on ad +1-dimensional hypercubic lattice,α = t,1,2..,d represents the direction,
β is the inverse coupling of the theory and exp(iφx) is the non-linearU(1) bosonic field. Clearly,
whenµ 6= 0 the action is complex and the path integral suffers from a sign problem andone cannot
use the conventional Monte Carlo methods. In particular the Wolff-cluster algorithm [2] is no
longer applicable.

In order to construct the WL-approach we rewrite the partition function using the strong cou-
pling (or high temperature) expansion to all orders. Using the identity

exp
{

β cos(φ)
}

=
∞

∑
k=−∞

Ik

(

β
)

eikφ
, (2.2)

on every bond and integrating over the original angle variables the partitionfunction can be written
in terms of integer bond variableskx,α and one gets

Z = ∑
[kx,α ]

∏
[x,α]

{

eµδα,t kx,α Ikx,α

(

β
)

δ
(

∑
α

[kx,α − kx−α,α ]
)

}

. (2.3)
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Figure 1: An illustration of the world-line configuration for the XY-model.

HereIk(β ) is the modified Bessel function of the first kind. The delta function in the above expres-
sion shows that the bond variables satisfy a local constraint at each latticesitex which is nothing
but the current conservation relation. Thus, the partition function of the non-linear sigma model
has been rewritten as a sum over configurations of current-loops. Figure 4 illustrates one such con-
figuration in two dimensions. Importantly, this representation does not suffer from a sign problem
even at non-zeroµ. The sign problem has been traded for a constraint condition which is noteasily
satisfied by a local change. However, developments over the past decade have shown that there are
efficient non-local updates for such constrained problems [5, 6, 7, 15].

Is this approach general? In other words can the sign problem of other bosonic lattice field
theories with a chemical potential, be solved in a world-line representation? Wewill argue below
that the answer is “yes” in many cases. The sign problem inO(N) models with a chemical potential
was solved using dual variables in [16]. For theXY model it reduces to the world-line representa-
tion discussed above. Later we will devise a new world-line approach to theO(N) models using
fermionic composites which is much simpler. In the next section we will argue thattheCPN−1

model can also be re-written in the world-line representation. This should then allow us to solve
the sign problem in theCPN−1 models with a chemical potential.

3. World-line Approach: CPN−1 Model

In this section we will construct the world-line representation of theCPN−1 model as a non-
trivial application of the WL-approach. One may recall that conventionalcluster algorithms do not
work for these models even in the absence of a chemical potential.CPN−1 models were recently
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formulated as the low energy effective theory of anSU(N)-symmetric quantum-spin system in
the Hamiltonian (D-theory) formulation [17]. The spin system was formulated inthe world-line
formulation, and solved using the loop-cluster algorithm. Thus, the first successful efficient cluster
algorithm forCPN−1 models emerged in the WL-approach. Here we will argue that a world-line
representation can also be constructed for the conventional model directly in Euclidean space.

TheCPN−1 model is conventionally written in terms ofN component complex vectorza
i ,a =

1,2, ..,N at each lattice sitei with the constraint∑a |za
i |2 = 1 [18, 19]. The action of the model is

given by
S = −β ∑

<i j>

(za
i zb

i )(z
b
jz

a
j) (3.1)

where< i j > denotes the bond connecting the nearest neighbor sitesi and j. The action is invariant
under globalSU(N) transformationszi → Uzi andU(1) gauge transformationszi → exp(iφi)zi.
Since the gauge field is not dynamical in the theory, the model is equivalent tostrongly coupled
N-flavor scalar QED. Let us now derive the world-line representation.

Consider the partition function of the model,

Z =
∫

∏
i

[dzi]exp(β ∑
<i j>

(za
i zb

i )(z
b
jz

a
j)) (3.2)

where[dzi] is the integral over 2N-dimensional unit vectors. The partition function can be rewritten
as

Z =
∫

∏
i

[dzi] ∏
<i j>

∏
<ab>

∑
[nab

i j ]

β nab
i j

nab
i j !

(za
i zb

i )
nab

i j (zb
jz

a
j)

nab
i j (3.3)

where each bond< i j > contains anN ×N matrix of non-negative integersni j ≡ nab
i j which deter-

mines the power of(za
i zb

i ) and(zb
jz

a
j). Now one can integrate over[dzi] using the identity

∫

[dz](z1)
k1(z1)

l1...(zN)kN (zN)lN = δk1,l1δk2,l2...δkN ,lN
2πNk1!k2!k3!...kN !

(k1 + k2 + ...+ kN +N −1)!
. (3.4)

If we definek ≡ (k1,k2, ...,kN) as anN-vector and

I(k) =
2πNk1!k2!k3!...kN !

(k1 + k2 + ...+ kN +N −1)!
, (3.5)

the partition function can be written compactly as

Z = ∑
[ni j]

(

∏
i

I(qi)

)

δqi,pi

(

∏
<i j>

∏
ab

β nab
i j

nab
i j !

)

(3.6)

where
qi

a = ∑
µ

∑
b

{

nab
i(i+µ) +nba

(i−µ)i

}

, pi
a = ∑

µ
∑
b

{

nba
i(i+µ) +nab

(i−µ)i

}

(3.7)

Thus, the partition function has been written in terms of the constrained bond matricesni j. These
constrains encode the conserved currents of theCPN−1 model and hence we call this the world-line
representation. Using the ideas developed in [7] it should now be possibleto update the constrained
system. This has not yet been accomplished but is an interesting researchproject for the future.
Further adding a chemical potential will also be interesting.
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Figure 2: An illustration of a closed pack dimer configuration in two dimension. Ind + 1-dimensions
statistical mechanics of such configurations naturally lead to the physics of thed-dimensional XY model.

4. Bosons as Fermionic Composites

Scalar field theories are naturally formulated using scalar fields. However, all scalar particles
discovered in nature until now are bound fermionic composites. Interestingly, we have discovered
recently that it is also computationally simpler to formulate certain scalar lattice field theories from
a microscopic model of fermions such that the bosons arise as fermionic composites. Composite
fermion models of scalar field theories can be constructed easily as stronglycoupled lattice gauge
theories. They lead to a novel world-line approach where the fermionic nature restricts the number
of allowed scalar particles on a given lattice site. The underlying idea is verysimilar to the D-
theory formulations of field theories [20], however the formulations discussed below occur directly
in Euclidean space and often it is easier to design worm-type algorithms in this approach. Let us
illustrate this with two examples.

First consider theXY model. A simpleXY model of composite fermions on ad + 1 dimen-
sional hypercubic lattice is given by

S = − ∑
x,i=1,2..,d

ψxψxψx+iψx+i −T ∑
x

ψxψxψx+tψx+t (4.1)

whereψx,ψx are two Grassmann valued lattice fields. This theory has an exact globalU(1) sym-
metry whereψx → eiσxθ ψx andψx → eiσxθ ψx whereσx is +1 on even sites and−1 on odd sites.
Note that one of the dimensions (referred to ast here) has been singled out and acts like a fictitious
temperature. If we study this theory on aLd ×Lt lattice withLt fixed, then by tuningT one obtains
the physics of the conventionalXY model ind dimensions through dimensional reduction.

6
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It is possible to integrate out the Grassmann variables and write the partition function as a sum
over all possible closed packed dimer configurations. In particular every dimer in the temporal
direction carries a weightT . Thus, the statistical mechanics of closed packed dimers on a cubic
lattice in d + 1-dimensions leads naturally to the physics of theXY model. A configuration of a
closed pack dimers is shown in Fig. 2. Clearly these configurations are much simpler to represent
on a computer than the world-line configurations of the conventionalXY model shown in Fig. 1.
Another advantage of this representation of theXY model is that it can be updated very efficiently
with a worm-type algorithm which is much simpler to code than the Wolff-cluster algorithm [2].
It has been shown that this model and its variants do indeed reproduce theexpectedKT physics
in d = 2 [21] andXY universal critical behavior ind = 3 [22]. Interestingly, in 1+ 1 dimensions
with T = 1 andLt = L, the model leads to a non-compact version of theXY model and so contains
no vortices and evades a KT transition [23]. Thus, the fermionic representation also allows us to
formulate naturally a non-compactU(1) field theory.

Second we focus on anSU(2)× SU(2)×U(1) model of composite fermions. This is an
interesting toy model for pions of two flavor QCD. The action of the model is given by

S = − ∑
x,i=1,2..,d

Tr[Σx Σx+i]−T ∑
x

Tr[Σx Σx+t ]− c∑
x

detΣx (4.2)

where

Σx ≡
(

ux

dx

)

(

ux dx

)

=

(

uxux uxdx

dxux dxdx

)

, (4.3)

is a 2×2 matrix made up fermionic bilinears. Hereux,ux,dx anddx are four independent Grass-
mann variables defined on each site. Whenc = 0, the action is symmetric under theSU(2)×
SUS(2)×U(1) chiral transformations

Σx → LΣxR†eiφ for x even (4.4)

Σx → RΣxL†e−iφ for x odd

Whenc 6= 0, the symmetry under theU(1) subgroup is broken explicitly. Hence the parameterc
behaves like the anomaly.

Once the Grassmann integration is performed the partition function can be written as a sta-
tistical mechanics of two different types of closed oriented loops which form the world lines of
the four pions in the model. A non-zeroc creates lattice sites which the pion loops cannot touch.
An example of a configuration of pions is given in Fig.3. We refer to such sites as “instantons”.
The model has been studied recently with a directed path algorithm and we refer the reader to the
original work [24]. Cluster algorithms in the conventional formulation do notwork for scalar field
theory with anSU(2)×SU(2)×U(1) field theory. For this reason until recently it was difficult to
study the effects of the anomaly on the two-flavor chiral transition. Using theworm-approach we
were able to study this question non-perturbatively and beyond mean field theory for the first time
and found that a rather strong anomaly was necessary before theO(4) universality sets in [25].
Using this model we have also clearly shown that theσ -resonance can have a significant impact on
the width of the region where chiral perturbation theory is valid [26]. A variant of the above model

7
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Figure 3: An illustration of a world-line configuration for anSU(2)×SU(2)×U(1) scalar field theory that
arises from a composite fermion model.

also allows one to study anSU(2)×U(1) scalar field theory which naturally arises from two-color
QCD with staggered fermions [27]. Thus, we learn that the fermionic approach naturally leads to a
simple way to solveO(N)×O(2) models forN = 2,3,4. An extension to higher values ofN seems
straight forward. Breaking theO(2) symmetry would then lead to a new approach to solvingO(N)

models. Adding chemical potentials would not lead to any new sign problems. Itwould be useful
to compare this approach to the approach suggested in [16].

Lattice QCD with staggered fermions at a finite baryon chemical potential in the strong cou-
pling limit can also be formulated and studied in the WL-approach. This was already done almost
two decades ago [28]. The theory however suffers from a sign problem which can only be solved
at zero chemical potential. In any case, in the previous study the problem was solved using a brute
force technique but using a local algorithm. Recently, the problem has been revisited but now us-
ing the worm algorithm. Clear advantages of the worm approach has been demonstrated. For more
details we refer to the work presented by Michael Fromm at this conference.

5. World-line Approach: The Thirring Model

Let us now discuss how the WL-approach can be applied to a fermionic fieldtheory if the
fermion sign problem can be solved. Solution to the fermion sign problem in three or more di-
mensions usually involves a re-summation over a class of configurations. This makes the problem
computationally more demanding than bosonic field theories since a significant fraction of the
update-time goes into the re-summation effort. Clearly, the new approach does not alleviate this

8
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problem. On the other hand it offers new techniques to solve the sign problem and some of them
are better than the conventional methods. Conventionally, the solution to the sign problem in the
presence of fermions comes from computing the determinant of a matrix whosesize grows with
system size. On the other hand in the WL-approach other interesting solutions which are compu-
tationally less demanding can emerge. One such approach called the meron-cluster approach was
found about a decade ago [11]. In the following we will device a new determinantal solution to the
lattice thirring model. The main advantage of this solution is that the size of the matrix isdynami-
cally determined by the parameters of the model and does not always grow with system size. This
is particularly true deep in the strong coupling phase (confined phase) which is the phase where the
conventional algorithms become more demanding.

The action of the model we consider is constructed with massless staggered fermions and is
given by

S = −∑
x,µ

ηµ(x)ψx[ψx+µ −ψx−µ ]−Uψxψxψx+µψx+µ . (5.1)

Here we assumex is a point on anLd hypercubic lattice with toroidal boundary conditions, the index
µ = 1,2, ..,d labels the direction, the fermion fieldsψx andψx are single component Grassmann
fields with anti-periodic boundary conditions. Since the interactions exist onbonds the model is
equivalent to the massless Thirring model in the weak coupling limit [29, 30]. The lattice model is
invariant under an exactU(1) chiral symmetry:

ψx → exp(iσxφ)ψx; ψx → exp(−iσxφ)ψx (5.2)

whereσx is 1 on even sites and−1 on odd sites. For smallU this chiral symmetry remains unbro-
ken and the system contains massless fermions, while for largeU the symmetry is spontaneously
broken and the system contains massless Goldstone bosons but massive fermions. Thus, there is an
interesting quantum phase transition in the thermodynamic limit at a critical couplingUc. A variant
of this phase transition may be of interest in graphene-like systems [31].

The conventional Monte-Carlo approach for fermionic systems is cruciallydependent on rewrit-
ing the fermion action as a bilinear in fermions [32, 33]. In the current context the partition function

Z =
∫

[dψdψ ]exp(−S) (5.3)

can be rewritten by introducing new auxiliary variables eiφµ (x) on the links connectingx with x+ µ
so that the four-fermion operator is converted to a fermion bilinear. Mathematically one can show
thatZ can be rewritten as

Z =
∫

dφ [dψdψ ] exp
{

∑
x,y

ψx(M[φ ])x,yψy

}

(5.4)

whereM(φ) is anLd ×Ld matrix given by

M[φ ] = ηµ(x)
[

δx+µ,y(1+
√

Ueiφµ (x))−δx−µ,y(1+
√

Ue−iφµ (x))
]

. (5.5)

It is easy to verify that by integrating over the angles 0≤ φµ(x) < 2π one can recover the original
partition function given in eq.(5.3). But if we integrate over the Grassmann variables first we obtain

Z =
∫

[dφ ] Det(M[φ ]) (5.6)

9
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Bags

Figure 4: An illustration of a “dynamical-bag” configuration as discussed in the text.

where the determinant is non-negative and thus the sign problem is solved.One can now use either
the determinantal Monte-Carlo algorithm or the Hybrid Molecular Dynamics algorithm to generate
[φ ] accordingly [29, 30]. In the latter approach it is common to introduce a fermion mass in order
to regulate the condition number of the fermion matrixM[φ ]. However, this breaks the chiral
symmetry and it is difficult to extrapolate to the massless limit. The exactly massless problem of
interest is known to be computationally very demanding especially for large values ofU due to the
excessively large number of small eigenvalues ofM[φ ] [31].

The above approach is the most commonly used method to deal with four-fermion couplings
and is known in the literature as a Hubbard-Stratanovich transformation. Let us now discuss a WL-
approach to the problem. Instead of introducing auxiliary variables, we begin with the partition
function given by

Z =
∫

[dψdψ]exp

(

∑
x,µ

{

ηµ(x)ψx[ψx+µ −ψx−µ ]+Uψxψxψx+µψx+µ

}

)

, (5.7)

and expand it in powers ofU using

exp(Uψxψxψx+µψx+µ) = 1+Uψxψxψx+µψx+µ . (5.8)

The Grassmann integration then gives

Z = ∑
nx,µ=0,1

(

∏
x,µ

Unx,µ
)

Det(W [n]) (5.9)

wherenx,µ = 0,1. Thenx,µ = 1 bonds are the same as the hard core dimers encountered in the
previous section in the fermionicXY model. Note that in this approach the Grassmann integration

10
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Figure 5: Plot of the number ofnx,µ = 1 bonds on a 163 lattice atU = 1 in the dynamical-bag algorithm.

leads to a determinant of a different matrixW [n], which is just the free fermion matrix where the
sites connected tonx,µ = 1 are dropped. It is easy to argue that Det(W [n]) is also non-negative and
thus there is again no sign problem.

Interestingly, the configuration[n] divides the lattice into “bags” of sites connected with only
nx,µ = 0 bonds. Inside a bag the fermions hop freely while outside they are confined to hop on
single bonds. The size and shape of the bags are dynamically determined bythe value ofU . Figure
4 gives an illustration of one such configuration. For this reason we call our new algorithm the
“dynamical-bag” algorithm. Since a single world line configuration of fermionsinside the bag can
give negative weights due to the Pauli principle, one has to resum all the possible fermion world
lines within the bag. This gives the Det(W [n]), which in our case is non-negative. WhenU is large,
the bags are small comprising of a few neighboring bonds and thus independent of the system size.
Hence, the computation of the determinant must be easy. In fact, as we will argue below, it is
not even necessary to compute the determinant, but just one matrix element ofthe inverse ofW [n]

at every local update step, which is quite easy for small matrices. Note that itis precisely when
U is large that conventional algorithms begin to fail. WhenU is small the bags can percolate and
become as big as the system size. This naturally leads to massless fermions. Here the WL-approach
will be similar to the conventional approach in efficiency. The typical size ofthe bags may provide
an interesting length scale for the problem.

Our algorithm consists of two steps: one step changesnx,µ between 0 and 1 on the bonds and
the other step moves the bondsnx,µ bonds around. One can develop a combination of a regular
local heat-bath algorithm to accomplish the former and a worm-type algorithm to accomplish the
latter. An important point to note is that the probability to introduce or remove a bond depends
on the ratio of two determinants one with and one without the bond. This ratio is exactly equal to
|[(W [n])−1]x,x+µ |2 where the bond in consideration is between the sitesx andx+ µ and the matrix
W [n] does not contain the bond under consideration. The computation of the inverse can be a

11
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time consuming process. Further, if the matrixW [n] contains exact zero modes, one has to know
about its existence so that such configurations are not generated. These two difficulties makes the
algorithm more time consuming as compared to bosonic algorithms. However, this isa price one
has to pay for doing fermionic physics and we do not know a way out of it at the moment. However,
at largeU when the “fermions” are mostly bound into bosons these difficulties become milder and
disappear completely at infiniteU . Thus, the algorithm knows when to work hard to take into
account the dynamics of the fermions. In Fig. 5 we show the time evolution of thenumber of
nx,µ = 1 bonds on the lattice atU = 1 starting from two different initial conditions on a 163 lattice
which was accomplished in a few hours on a laptop with just a local heat bath algorithm.

Although the local heat bath algorithm may be sufficient at smallU , it will become inefficient
asU increases. At largeU the worm part of the algorithm is essential for efficiency. The worm al-
gorithm is also necessary to measure observables such as the chiral condensate susceptibility which
can get contributions from fermionic correlations between two different bags. These correlations
are difficult to measure in the WL-approach using simple matrix inversions. Inthe worm algorithm
such correlations come from configurations which contain two defects (thehead and the tail of
the worm) one of which is present in one bag and the other in the other bag. We are currently
implementing this complete algorithm and the technical details will be discussed elsewhere.

6. World-sheet Approach: Abelian Gauge Theory

The natural extension of world-lines to gauge theories must be in the form of world-sheets.
Thus, the WL-approach must be modified into a WS-approach when applying to gauge theories.
Here we illustrate the ideas using a pure compactU(1) lattice gauge theory in four dimensions.
In the conventional formulation the theory describes the dynamics of the compact gauge field 0≤
φα(x) < 2π,α = 1,2,3,4 which are angular variables associated to bonds(x,α) that connect sites
x andx+ α̂. The model is described by the partition function

Z =
∫

[dφ ]exp[−S]. (6.1)

where the action is taken for convenience to be the Wilson action

S = −β ∑
P(x,µ,ν)

cos

(

φµν(x)

)

, (6.2)

where the sum is over all plaquettesP(x,µ,ν) (defined by a lattice sitex and two forward directions
µ < ν) andφµν(x) = φµ(x)+φν(x +aµ̂)−φµ(x +aν̂)−φν(x). We defineφ−α(x) = −φα(x− α̂)

for convenience.
Motivated by the world-line approach we can rewrite the partition function in terms of world-

sheet variables. For this purpose we begin with

Z =
∫

[dφ ] ∏
P(x,µ,ν)

eβ cos(φµν (x))
. (6.3)

and use eq.(2.2) on every plaquette and then integrate over all anglesφα(x) as in theXY model.
We now get

Z = ∑
[k]

∏
P(x,µ,ν)

Ikµν (x)(β ) ∏
(x,µ)

δ∑ν [kµν (x)−kµν (x−ν̂)],0 (6.4)
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where[k] represents a configuration of constrained integers on each plaquetteP(x,µ,ν). For sim-
plicity we definekµν(x) = −kνµ(x). The configurations must now satisfy the constraint that

∑
ν

[kµν(x)− kµν(x− ν̂)] = 0 (6.5)

at every bond(x,µ) and are shown with delta functions in the above expression. It is possible to
argue that such a constrained set of integers arise from oriented closed surfaces or world sheets.
For example, an update of[k] requires the change ofk on a closed surface of plaquettes. Any
configuration[k] can be constructed by a series of local cubical updates and sheet updates in two
dimensional planes.

An interesting observable is the Wilson loop. Consider a closed loop on aµν plane of size
L×L. The Wilson loop associated with this loop is defined as

WL =
N

∏
k=1

exp(iφαk(xk)) (6.6)

wherexk andαk are the sites and directions along the loop. The average of this observableis given
by

〈WL〉 =
1
Z

∫

[dφ ] WL exp
(

−βS
)

=

〈

∏
p∈P

Ikp+1(β )

Ikp(β )

〉

(6.7)

where the final average is assumed to be performed in the world-sheet representation andP stands
for the set of plaquettes that cover the surface of the Wilson loop.

In order to explore the usefulness of the new representation, we have implemented a worm-
like update for the[k] configuration which involves picking aµν plane at random and introducing
a defect in the world-sheet configuration in the form of a 1×1 Wilson-loop. We then increase or
decrease the size of the defect-loop but restricting it to be a square loop within the plane. During this
process we allow for local cubical updates within a slice on either side of thesheet, which allows
the surface being updated to fluctuate. The algorithm ends when the defect closes on itself or
propagates and updates a whole sheet.We have observed that sheets doget updated in the Coulomb
phase and when the volumes are small. Figure 6 shows a comparison of the results of the world-
sheet algorithm with the conventional algorithm for various sizes of a square shaped Wilson-loop.
The figures show that for small sizes both algorithms are comparable and produce the expected
physics, namely an area law in the confined phase and a perimeter law in the Coulomb phase.
Interestingly, the world-sheet algorithm is able to measure large Wilson-loops quite well in the
confined phase, while the conventional algorithm still appears superior inthe Coulomb phase.
Abelian lattice gauge theories have been studied in the world-sheet representation in the confined
phase before [34]. It would be exciting to devise a WS-algorithm which is efficient even in the
Coulomb phase.

7. Conclusions

We have tried to demonstrate in this talk that there is a new computational approach to a variety
of lattice field theories. This approach is based on rewriting the partition function in a world-line
representation. The constrained configurations in this representation can be updated efficiently with
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Figure 6: Comparing the results for the square Wilson-loop as a function of its size obtained using the
world-sheet algorithm (filled circles) and the conventional algorithm (open squares). The world-sheet algo-
rithm is better than the conventional method in the confined phase (left figure) while the opposite is true in
the Coulomb phase (right figure).

the newly discovered worm-algorithms. This approach gives an alternative method for studying
many scalar field theories. They also lead to new solutions to the fermion sign problems. One such
solution leads to an interesting fermion algorithm which we call the dynamical-bagalgorithm.
Finally we argue that the ideas may also be applicable to gauge theories in the form of world-sheet
methods. Clearly the subject is still in its infancy and it would be exciting if some ofthe ideas can
lead to important computational break-through.
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