
P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
8
)
0
1
5

Kaon physics: a lattice perspective

Laurent Lellouch ∗

Centre de Physique Théorique, Case 907, CNRS Luminy, F-13288 Marseille Cedex 9, France†

E-mail: lellouch@cpt.univ-mrs.fr

I critically review recent lattice QCD results relevant forkaon phenomenology, as well as the

methods that are used to obtain them. The focus is on calculations withNf = 2 andNf = 2+ 1

flavors of sea quarks. Concerning methodology, the subjectscovered include a discussion of

how best to extrapolate and/or interpolate results to the physical quark-mass point, a scheme for

assessing the extent to which a lattice QCD calculation includes the various effects required to

compute a given quantity reliably and a procedure for averaging lattice results. The phenomeno-

logical topics that I review comprise leptonic and semileptonic kaon decays, as well as neutral

kaon mixing and CP violation inK → ππ decays.

The XXVI International Symposium on Lattice Field Theory
July 14-19 2008
Williamsburg, Virginia, USA

∗Speaker.
†CPT is UMR 6207 of the CNRS and of the universities of Aix-Marseille I, Aix-Marseille II and of Sud Toulon-Var,

and is affiliated with the FRUMAM.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:lellouch@cpt.univ-mrs.fr


P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
8
)
0
1
5
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1. Introduction

This talk critically reviews recent lattice QCD results relevant for kaon phenomenology, as
well as the methodology that is used to obtain them. The focus is on full QCD calculations, which
account for the effects of light sea quarks either partially, as inNf = 2 simulations, where degener-
ate up and down sea quarks of massmud are included, or fully, as inNf = 2+1 calculations, where
strange sea quarks of massms are also incorporated.

The main motivation for studying kaon physics off and on the lattice is to test the standard
model, to determine some of its parameters and to constrain possible new physicsscenarios. From
a lattice perspective, kaon processes fall into three broad categories.The first are processes, such
as leptonic and semileptonic kaon decays, for which lattice QCD methods are already providing
high precision results. The second category corresponds to processes for which lattice calculations
are delivering results with errors on the level of 10% or less, such as for K0-K̄0 mixing matrix
elements. The last category of processes are those for which lattice calculations have failed up
until now to provide reliable answers. Amongst them are the∆I = 1/2 rule and, more critically,
direct CP violation inK → ππ decays.

Another motivation for studying kaons physics on the lattice is the overlap this physics has with
chiral perturbation theory (ChPT). ChPT describes the low-energy dynamics of the pseudo-Nambu-
Goldstone bosons of chiral symmetry breaking and has been successful in many phenomenological
applications. Moreover, it is a very useful tool for understanding the dependence of lattice results
on light quark masses and on volume. RecentNf = 2 and 2+1 calculations, which include pions
with massesMπ <∼ 350MeV, are not only using ChPT but are also beginning to provide information
about ChPT in return.

The talk begins with a critical discussion of the role that ChPT and other expansions can
play in interpolating and extrapolating lattice QCD results to the physical mass point, (mud,ms) =

(mph
ud,m

ph
s ), in view of the quark mass values currently reached in lattice calculations. Inan aside,

I present a scheme for visualizing the extent to which a lattice calculation includes the different
effects necessary for computing a quantity of interest reliably, and a procedure for averaging lat-
tice results. This is followed by a review of calculations of quantities relevantfor leptonic and
semileptonic kaon decays, as well as for neutral kaon mixing and CP violationin K → ππ decays.

2. Reaching the physical mass point

Using today’s algorithms, it is straightforward to performNf = 2+ 1 calculations with a
strange quark whose mass is around its physical value. The physical strange quark mass point
is thus recovered simply by interpolation.

Reaching the physical up and down quark mass point is much more difficult. Though the
results of PACS-CS [1] announce that calculations will soon be done directly at this point in phys-
ically large volumes, for the moment all other simulations are being performed with larger quark
masses. Thus, reaching the physical point still requires conducting a number of computationally
intensive calculations withmud < mmax

ud ∼ mph
s /2, extending preferably belowmph

s /12, and per-
forming a delicate extrapolation inmud to mph

ud ≃ mph
s /26.
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To guide the interpolation tomph
s and extrapolation tomph

ud, a natural candidate isSU(3) ChPT,
since it provides a concise framework for describing the dependence of hadronic quantities on the
masses of the up, down and strange quarks. Moreover, ChPT in its various quenched and partially-
quenched guises has served the lattice community well. Nevertheless, lattice calculations are reach-
ing regions of parameter space and precisions never attained before, and it is worth considering the
following two questions candidly:

• What is the best way to interpolate toms = mph
s ?

• What is the best way to extrapolate frommph
s /12<∼ mud < mmax

ud ∼ mph
s /2 tomud = mph

ud?

There are, I believe, three physically motivated options to choose from:

(1) As already mentioned,SU(3) ChPT is a natural candidate. It has the advantage of address-
ing both problems together, within a compact and constrained framework. Itsdrawback is
that it provides similar solutions to two problems which are of a quite different nature: the
first concerns a simple interpolation rather far away from the chiral pointwhile the second
involves a difficult extrapolation which reaches much deeper into the chiralregime.

(2) SU(2) ChPT provides a means of distinguishing these two problems. For the extrapolation
in mud, it brings to bear all of the power of chiral expansions. The interpolationin ms is not
directly addressed, but it suffices to supplement the chiral expansion with a regular mass–or
what I call“flavor” –expansion aboutmph

s , and to perform a simple polynomial interpolation.

(3) The idea of aflavor expansion can also be applied to the extrapolation inmud. To reduce
uncertainties, this expansion should be performed about the midpoint of theinterval between
the physical point and the largest up and down quark mass considered,i.e. m̄ud = [mph

ud +

mmax
ud ]/2. In this scheme, both the extrapolation inmud and the interpolation inms can be

performed with polynomialflavorexpansions.

Let us now review these three alternatives in more detail.

2.1 SU(3) versusSU(2) ChPT and flavor expansions: what’s the difference?

The flavor expansions are performed about regular points ¯mud andmph
s (i.e. they are Taylor

expansions). This is not the case for the chiral expansions.SU(2) ChPT is an expansion about the
singular point(mud,ms) = (0,mph

s ). SU(3) ChPT makes the additional assumption that the strange
quark is chiral so that the expansion is around(mud,ms) = (0,0).

In flavor expansions of quantities which do not vanish in theSU(2) chiral limit, it is the
“distance” from the expansion points, ¯mud or mph

s , in units of the QCD scale, which determines how
well the series converges (hence my use of the adjective “flavor”). Thus, the expansion parameters
are(mud− m̄ud)/MQCD and(ms−mph

s )/MQCD, whereMQCD ∼ 1GeV is a typical QCD scale. On
the other hand,SU(3) ChPT expressions are expansions inmud,s/Λχ , with Λχ ∼ 4πFπ = O(MQCD)

the chiral symmetry breaking scale. InSU(2), the expansions are inmud/ms andmud/Λχ .
Becausemud andms are not measured directly in experiment, it is convenient to replace these

masses by observables which are sensitive to them. ChPT suggests thatMπ and Mχ
K ≡ [M2

K −
M2

π/2]1/2, with Mph
π ≃ 135MeV andMχ,ph

K ≃ 486MeV, are particularly appropriate. Indeed, LO
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ChPT yieldsM2
π = 2Bmud and (Mχ

K)2 = Bms, with B = O(MQCD). In terms of these variable,
theSU(2) ChPT expansion parameters can be written(Mπ/

√
2Mχ

K)2 and(Mπ/Λχ)2, while SU(3)

ChPT is an expansion in(Mπ,K,η/Λχ)2. Similarly, theflavor expansion parameters become∆π ≡
(M2

π − M̄2
π)/2M2

QCD and∆K ≡ [(Mχ
K)2− (Mχ,ph

K )2]/M2
QCD. It is worth noting that this definition for

∆K remains appropriate if one assumes thatMχ
K itself obeys aflavor expansion inms, i.e. Mχ

K =

Mχ,ph
K [1+CK(ms−mph

s )/MQCD + h.o.t], with CK a constant. Indeed, in that case we also have
∆K = O[(ms−mph

s )/MQCD]. On the other hand,Mπ ’s flavor expansion inmud, Mπ = M̄π [1+

2Cπ(mud − m̄ud)/MQCD + h.o.t], is poorly behaved for the range ofmud currently considered in
lattice calculations, since the NLO plus higher order terms can be 50% or more of the LO term.
However, this fact does not invalidate the use offlavor expansions inmud for quantities which do
not vanish in theSU(2) chiral limit. It merely signals that, in current calculations, the relative
variation inMπ is large, while the change inMπ with respect toMQCD remains small.

The expected accuracy at NLO in theSU(2) expansion around the physical mass point is much
better than for theSU(3) case. Indeed, inSU(2) this accuracy is given by(Mph

π /
√

2Mχ,ph
K )4 ∼ 0.1%

whereas it is expected to be(Mph
η /4πFπ)4 ∼ 5% in theSU(3) case. However, with pions of about

450 MeV floating around, as in present day simulations, theSU(2) figure becomes(Mπ/
√

2Mχ
K)4∼

20%, which is much less impressive. Nevertheless, this expansion has the advantage that its con-
vergence improves rapidly asMπ is reduced, while theSU(3) expansion parameter(Mη/4πFπ)2

does not decrease significantly withMπ .
The accuracy of theflavor interpolation in strange quark mass is generically very high. Sup-

pose that one has performed the calculation for at least two values of the strange quark mass that
bracketmph

s with a total spread of about 10%. The expansion parameter is then|∆K | ∼ 0.01. As-
suming that the error due to the truncation of the interpolating polynomial is on theorder of the
first omitted term, the systematic error associated with a linear interpolation in(Mχ

K)2 (i.e. a linear
interpolation) will have an accuracy on the order of∆2

K ∼ 0.01%.
In current lattice calculations, theflavorexpansion in up and down quark mass is not as good.

Assuming that we consider only pions withMπ ≤ Mmax
π = 450MeV, the expansion parameter is

|∆π | <∼ 0.05. This means that a linear extrapolation will have a truncation uncertainty onthe order
of ∆2

π∼0.3% (with a coefficient that increases withu/d content). Moreover, it is straightforward to
show that, with a quadraticflavorexpansion, one can fit a chiral logarithm which gives a correction
of up to 30% asMπ varies in the range fromMph

π to Mmax
π , with a systematic accuracy better than

0.5%. So, even in the presence of a chiral logarithm, aflavorexpansion can be used.
Let me now add a few words about the possible outcomes of implementing the different ap-

proaches.SU(3) ChPT provides functional forms which are more constrained, i.e. which have
less parameters, at a given order, than theSU(2) chiral andflavor expansions. That is one reason
why SU(3) ChPT might be appealing. So let me assume, for the moment that we are fitting lattice
results toSU(3) ChPT expressions. AsMπ is lowered below

√
2Mχ

K with fixed ms, SU(3) ChPT
turns intoSU(2) ChPT, except that the extended symmetry of theSU(3) theory imposes constraints
amongst theSU(2) LECs. These constraints can be released by adding NNLO and higher terms to
theSU(3) expansion. If theM2

K/Λ2
χ expansion in theSU(3) theory behaves well, then the LECs

obtained with the fits may beSU(3) LECs of QCD, as defined in theSU(3) chiral limit. However,
if the assumption that the strange quark is chiral is not borne out in practice, a good fit may still be
obtained by adding higher order terms, but the fitted LECs will most likely not be QCD’s LECs.
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In that case, one may still find that theM2
π component of theSU(3) chiral expansion is reasonably

well behaved. If this is so, anSU(2) chiral fit ought to work and should give theSU(2) LECs of
QCD. However, the expansion may still behave poorly for heavier pions because in that case the
expansion parameter(Mπ/

√
2Mχ

K)2 may not be small. Alternatively one may use theflavorexpan-
sion approach. It deals with the strange quark mass interpolation in the same way asSU(2) ChPT,
but differs in the choice of expansion point for the extrapolation inmud. ChPT expands observables
aboutMπ = 0, which is further from the lightest simulatedMπ than is the physical point. The
flavor expansion, on the other hand, is performed about a value ofMπ = M̄π which is between the
heaviest simulatedMπ and the physical value. Thus, theflavor expansion will be better behaved,
though generically less constrained.

ChPT is a worthy object of study in its own right, with applications which go beyond present
lattice QCD capabilities. Thus, it is important to test its range of validity and its accuracy where it is
applicable. It is also important to determine its LECs, since these can be used tomake predictions
in a variety of processes. However, if the goal is to determine the value of an observable at the
physical point, one should remain agnostic in regards to the expansion used and pick the one which
gives the lowest combined statistical and systematic error. Moreover, if thegoal is to obtain the
LECs of QCD, it may be necessary to perform calculations closer to the chiral limit, especially in
the case ofSU(3) ChPT.

2.2 SU(3) versusSU(2) ChPT and flavor expansions: examples

To further clarify the difference between the different expansions and their applicability to
lattice calculations, it is useful to turn to a concrete example. We consider here the expansions of
the pion and kaon decay constants,Fπ andFK , at NLO. In theSU(3) theory, we have [2]:

Fπ = F3

{

1− 1
(4πF3)2

[

χ1(M
2
π)+

1
2

χ1(M
2
K)

]

+4
(

L5 +L4
)

(µ)
M2

π
F2

3

+8L4(µ)
M2

K

F2
3

}

(2.1)

FK = F3

{

1− 1
(4πF3)2

[

3
8

χ1(M
2
π)+

3
4

χ1(M
2
K)+

3
8

χ1(M
2
η)

]

+4
(

L5 +2L4
)

(µ)
M2

K

F2
3

+4L4(µ)
M2

π
F2

3

}

, (2.2)

whereχn(M2) = M2n ln(M2/µ2) and whereF3 is the pion decay constant in theNf = 3 chiral limit.
The up-down and strange quark mass-dependence of these two quantities are obtained here in terms
of only threeparameters:F3, L4 andL5.

TheSU(2) theory is much less frugal with parameters. At NLO it predicts [3 – 5]:

Fπ = F2(1+αF∆K)

{

1− 1
(4πF2)2

[

χ1(M
2
π)− ℓ4(µ)M2

π
]

}

+O
(

M2
π∆K

)

(2.3)

FK = FK
2 (1+αK

F ∆K)

{

1− 1
(4πF2)2

[

3
8

χ1(M
2
π)− ℓK

4 (µ)M2
π

]}

+O
(

M2
π∆K

)

, (2.4)

whereF2 andFK
2 are the pion and kaon decay constants, respectively, in theNf = 2 chiral limit and

where I have included a strange quark mass dependence. Thus, theSU(2) description of the mass-
dependence of the two decay constants requires at leastsix parameters(F2, ℓ4, αF , FK

2 , ℓK
4 , αK

F ),
eight if O(M2

π∆K) terms are required.
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Figure 1: RBC/UKQCD’s partially quenched pion decay constants versus pion mass squared, for two values
of the sea pion mass, Mπ = 331and419MeV. The only points where sea and valence quarks are degenerate
are the square and circle with crosses. Also shown are the unitary SU(3) and SU(2) fits. Conventions are
such that fπ =

√
2Fπ = 131MeV.

This number of parameters is comparable to that required in theflavor expansion ofFK and
Fπ . Sixparameters are needed if theM2

π dependence turns out to be linear andeight if curvature is
observed, corresponding to an expansion toO(∆2

π ,∆K).

Let us now investigate how these considerations play out with real lattice results. I begin with
a partially quenched,Nf = 2+1 study ofFπ andFK performed by RBC/UKQCD [5], whose results
were presented at this conference by E. Scholz [6]. These results are shown in Fig. 1, where the
pion decay constant is plotted against the valence pion mass squared for two values of the sea pion
mass (331 MeV and 419 MeV). Details of the simulation are given below in Table1.

In their calculation, theSU(3) ChPT expansion parameters are, atMmax
π = 419MeV: (Mmax

π /

4πF ph
π )2 ≃ 0.1 and(Mη/ 4πF ph

π )2≃0.3. TheSU(2) expansion atMmax
π is not any better:(Mmax

π /√
2Mχ,ph

K )2 ≃ 0.4. Thus it is not clear, a priori, which of the two expansions is better at the top of the
Mπ range. Of course, as already mentioned, asMπ decreases theSU(2) expansion improves rapidly
whereas theSU(3) expansion parameter,(MK,η/4πF ph

π )2 stays roughly constant. Assuming that
SU(3) ChPT is applicable, they find very large NLO corrections to the pion decay constant, even
at their lightest unitary point,Mπ = 311MeV, where they are of order 70%. They also find that the
NLO forms do not describe their kaon results, where the down quark is replaced by a strange. This
is perhaps not too surprising since their kaons have masses of up to approximately 570 MeV.

With SU(2) ChPT, on the other hand, they obtain good fits and find much more reasonable
NLO corrections, that are on the order of 30% atMπ = 311MeV. They use this information,
together with that obtained from fits with partial NNLO terms and more massive pions, to conclude
thatSU(3) ChPT fails in the range of masses explored, whileSU(2) ChPT is reliable.

A few comments are in order. The first is that the fits do not take into accountcorrelations
which are obviously strong at fixed sea quark mass. This makes getting a meaningful figure of
merit for the fits difficult. The second is that the results display none of the logarithmic behavior
which becomes relevant in the extrapolation to physicalMπ : at NLO in partially quenched ChPT,

6
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Figure 2: From PACS-CS, FK as a function of the isospin averaged up and down quark masses, both
in lattice units, at a single value of the lattice spacing, a≃ 0.09fm [1]. The black circles are the decay
constants obtained from the different simulations, corresponding to Mπ ≃ 156, 296, 385, 411, 570 and
702MeV. The left panel shows these decays constants together with results from a variety of NLO SU(3)

ChPT fits (triangles) while the right panel displays the sameresults with NLO SU(2) ChPT fits (triangles).
If all fits were good, triangles at each mAWI

ud would sit atop the corresponding circle. In their conventions,
fK =

√
2FK = 159MeV.

the dependence on valence quark mass is linear and with only two values of the sea quark mass,
one cannot distinguish between a straight line and a chiral logarithm. Thus,the lattice results are
not inconsistent withSU(2) ChPT, but they cannot be claimed, either, to confirm the relevance
of this expansion in the quark mass range considered. Moreover, the value of Fπ obtained by
linear fit would be significantly larger than the one found in the plot, though consistent within the
final systematic error quoted by the authors. Finally, it should be remembered that the analysis is
performed at a single, rather large value of the lattice spacing (a≃ 0.11fm), and mass dependent
discretization errors could distort the physical chiral behavior.

PACS-CS has also investigated the applicability of the two variants of ChPT to their results
for the decay constants [1], as shown at this conference by Y. Kuramashi [7]. Their calculations
are performed for six different values of the pion mass, ranging from∼ 700MeV all the way down
to 156 MeV. Moreover, they consider only unitary points, for which valence and sea quarks of the
same flavor have identical masses (i.e. no partial quenching). The parameters of their simulations
are given below in Table 1. Their studies of the dependence ofFK on the isospin averaged up
and down quark mass,mud, are shown in Fig. 2. The left hand panel displays the decay constants
obtained directly from the simulations together with the values of these constantswhich result
from fitting the simulation data to variousSU(3) ChPT forms. The fits are restricted to points with
Mπ <∼ 410MeV. The fit results above this point are extrapolations. They find that NLO SU(3)

ChPT fails to reproduce theM2
π dependence ofFK aboveMπ ∼ 400MeV. Moreover, they find that

it fails to predict the strange quark mass dependence ofFK aroundmph
s and forMπ ≃ 400MeV.

Again, the situation is quite different forSU(2) ChPT fits. There they find that themud depen-
dence is well reproduced up toMπ ≃ 410MeV and only deviates from the simulation result by 5%
at Mπ ≃ 570MeV. Moreover thems dependence is correctly reproduced, as it should since there
are twoms values and this dependence is fitted by a line.

These calculations, performed almost all the way down to the physical point,are a real prowess.
For the moment, however, the volume considered for their lightest pion (Mπ ≃ 156MeV) is small,

7
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corresponding toLMπ ∼ 2.3. This may make it difficult to control finite-volume effects at lowMπ .
Moreover, the calculations have only been performed at a single lattice spacing for now, so that
alterations of the mass dependence by discretization errors have not yetbeen investigated.

Combining the experiences of RBC/UKQCD and PACS-CS, the following conclusion seems
to emerge:SU(3) ChPT appears to break down at the physical strange quark mass, at least in the
presence of heavier up and down quarks, with masses larger thanmud ≃ 9mph

ud ≃ mph
s /3, corre-

sponding toMπ >∼ 400MeV.

3. Aside on a classification scheme for lattice simulations and on the averaging of
lattice results

Before turning to quantities of phenomenological interest, I wish to say a fewwords about the
methodology that I will follow in reviewing lattice results.

3.1 Of stars and lattice calculations

The FLAVIAnet Lattice Averaging Group (FLAG) is in the process of putting together a clas-
sification scheme for lattice calculations. The goal is to provide tables which, at a glance, give
the reader a sense of how thoroughly a given calculation includes all of the necessary ingredients,
based on a list of pre-defined, objective criteria. Since this collective work has not yet been final-
ized, I propose a personal version of the scheme here. It is based ona starring system, reminiscent
of the one used in a famous, red restaurant guide:

⋆⋆⋆ indicates that this aspect of the calculation is fully satisfactory;

⋆⋆ indicates that the corresponding ingredient has not been fully included,but that the invstiga-
tions performed allow for a reasonable estimate of the ensuing systematic error;

⋆ indicates that the calculations performed are not sufficient to provide a reliable estimate of
what is missing.

More specifically, here are the criteria which I use for starring the calculations reviewed below:
• publication status

⋆⋆⋆ published
⋆⋆ preprint
⋆ proceedings, talk

• action, unitarity

⋆⋆⋆ local action, unitary calculation
⋆⋆ non-local action and/or discretization induced unitarity violations

• flavors

⋆⋆⋆ all dynamical flavors required for the process under study are included
⋆⋆ some dynamical flavors missing, but at leastNf ≥ 2
⋆ Nf = 0 (i.e. quenched calculation)

• renormalization

⋆⋆⋆ nonperturbative with nonperturbative running

8
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⋆⋆ nonperturbative with perturbative running at GeV energies, or perturbative at two-loops
or more

⋆ one-loop perturbative and/or discretization which leads to poorly controlled operator
mixing

• extrapolation/interpolation to physical mass point

Let Mmin
π,typ be a mass that is representative (“typical”) of the masses of the lightest pion

variants that contribute to themud dependence of the quantities studied.1

⋆⋆⋆ Mmin
π,typ ≤ 200MeV with NLO or better ChPT or any other demonstrably controlled

functional mass dependence
⋆⋆ Mmin

π,typ ≤ 350MeV and reliable estimate of extrapolation error
⋆ Mmin

π,typ > 350MeV

• continuum extrapolation

⋆⋆⋆ 3 or more lattice spacings with at least onea < 0.08fm and controlled scaling
⋆⋆ 2 or more lattice spacings with onea <∼ 0.1fm
⋆ a single lattice spacing or alla > 0.1fm

• finite volume

⋆⋆⋆ LMmin
π ≥ 4 (and numerical volume scaling study)

⋆⋆ 3 < LMmin
π ≤ 4 and well motived analytical corrections

⋆ LMmin
π ≤ 3 or 3< LMmin

π ≤ 4 and no quantification of finite-volume effects

whereMmin
π is the mass of the lightest pion contributing to finite-volume effects.

3.2 Averaging of lattice results

Now that results for various quantities of phenomenological interest are emerging from lattice
calculations in which most effects are realistically taken into account, it is important to set forth
objective, quantity independent averaging procedures. In particular, that means taking literally the
statistical and systematic error estimates provided by the authors in a refereed publication. It also
means only considering calculations in which all relevant sources of systematic uncertainty have
been accounted for. Since we are still in the early days of realistic lattice calculations, this rule
might have to be bent slightly at first to include results which are close to reaching this goal.

The averaging procedure which I adopt is the following. Given a list of results which sat-
isfy the basic criteria described above, I perform their weighted average, with an inverse weight
obtained by adding the statistical and systematic covariance matrices in quadrature. To determine
the statistcal error on the average, I construct aχ2 with only the statistical correlation matrix and
perform a standard∆χ2 analysis. For the systematic error, since one does not generically expect
them to compensate from one calculation to the next, I take the smallest total systematic uncer-
tainty amongst those obtained in the most complete calculations. In cases whereeither statistical
or systematic errors are not symmetric, I symmetrize them.

1 This “typical” mass depends on the fermion formulation used, on the quantities studied, etc. Since it is meant
to be indicative, I have kept its determination simple. For staggered calculations I take the RMS of the masses of
the different tastes; for non-staggered on staggered, the RMS of the valence and the sea taste-singlet pion masses; for
Wilson, overlap, domain-wall, the RMS of the valence and sea pion masses(i.e. simply the lightest pion mass for
unitary calculations); and for tmQCD, I have taken the charged pion mass, though some sort of isospin averaging should
probably be performed. I thank C. Aubin, J. Laiho, S. Sharpe and R.Van de Water for enlightening correspondence.
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There will be some statistical correlations between results obtained from the same set or from
subsets of a given ensemble of gauge configurations. There will also besome correlations in the
systematic errors of calculations which make use of similar methods. However,such correlations
have not yet been analyzed in any detail and I choose to neglect them here when computing world
averages. For computing an average’s statistical error, though, I keep only the statistical error of
the calculation, amongst those performed on a same set of configurations,that makes use of the
largest fraction of these configurations. Correlations may be added moresystematically later, once
they are better understood.

In situations where some results have significantly smaller systematic uncertainties, for reasons
which are not fully understood, one can provide an average with and without those results.

4. |Vus| from experiment and the lattice

A precise determination of the magnitude of the CKM matrix elementVusallows for a precision
test of CKM unitarity as well as of quark-lepton universality and providesconstraints on new
physics, through:

G2
q

G2
µ

[

|Vud|2 + |Vus|2 + |Vub|2
]

= 1+O

(

M2
W

Λ2
NP

)

, (4.1)

where(Vud,Vus,Vub) forms the first row of the CKM matrix and whereGq is the Fermi constant
as measured in quark decays, whereasGµ is the same constant as determined in muon decays.
Eq. (4.1) accounts for the fact that what is actually measured are not theCKM matrix elements,
Vqq′ , but(G2

q/G2
µ)×|Vqq′ |. The large amounts of new experimental results from BNL-E685, KLOE,

KTEV, ISTRA+ and NA48 provide the opportunity for testing this aspect ofthe standard model
with unprecedented accuracy.

The current situation on the measurement of the relevant CKM matrix elements is:

• |Vud| = 0.97425(22) [0.02%] from nuclearβ decays [8]

• |Vus| = 0.2246(12) [0.5%] from Kℓ3 decays [9]

• |Vus/Vud| = 0.2321(15) [0.6%] from Kℓ2 decays [9]

• |Vub| = 3.87(47) ·10−3 [12%] from exclusive and inclusiveb→ uℓν decays [10]

where a factor of(Gq/Gµ) is implicit, as per Eq. (4.1), and where the percentages in square brackets
indicate, for convenience, the relative error of the measurement.

The Flavianet Kaon Working Group combined the first three measurement tosqueeze out a
little additional precision on|Vus| [9]. I have updated their analysis here to take into account the
new result for|Vub| [8]:

• |Vud| = 0.97425(22) [0.02%], which implies the following contribution to the uncertainty in
Eq. (4.1):δ |Vud|2 = 4.3·10−4,

• |Vus| = 0.2252(9) [0.4%], which implies the following contribution to the uncertainty in
Eq. (4.1):δ |Vus|2 = 4.2·10−4,

• and the contribution fromVub to Eq. (4.1),|Vub|2 ≃ 1.5 ·10−5, is so small that its error bar is
irrelevant.
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Ref. Nf action a[fm]
LMmin

π
typ/val

Mmin
π [MeV]

typ/val
FK/Fπ

PDG’08 [11] 1.193(6)

ETM’08 [12] 2 tmQCD 0.07,0.09,0.10[Fπ ] 3.6/3.6 260/260 1.196(13)(7)(8)
NPLQCD’06
[13] 2+1 DWF/

KSMILC
0.13[r0] 5.1/3.5 420/290 1.218(2)+11

−24

MILC’04-07
[14, 15] 2+1 KSAsqTad

MILC
0.06,0.09,0.12,

0.15[Fπ ]
5.3/4.2 300/240 1.197(3)+6

−13

HPQCD/’07
UKQCD [16] 2+1 KSHISQ

MILC 0.09,0.12,0.15[ϒ] 4.8/4.1 360/310 1.189(2)(7)

RBC/’08
UKQCD [5] 2+1 DWF 0.11[Ω] 4.1/3.4 290/240 1.205(18)(62)

ALV’08 2+1 DWF/
KSMILC

0.09,0.12[ϒ/Fπ ] 5.3/4.2 300/240 1.191(16)(17)

PACS-CS’08[1] 2+1 NP-SW 0.09[Ω] 2.3/2.3 160/160 1.189(20)

BMW’08 2+1 SW
0.065,0.085,

0.125[Ξ]
4/4 190/190 1.19(1)(1)

Table 1: Parameters of the simulations used by various collaborations for calculating FK/Fπ , together with
their result for that quantity (results in italic were presented at this conference). The column Nf indicates the
number of sea quark flavors considered. The symbols in brackets in the a[fm] column indicate the quantity
used to set the scale. Also given are the masses of the lightest valence pion simulated, as well as the “typical”
lightest pion mass defined in footnote 1.

At the time of the conference,|Vus| was no longer the dominant source of uncertainty in Eq. (4.1).
However, the new result for|Vud| [8] makes it a dead heat. Combining these results yields:

G2
q

G2
µ

[

|Vud|2 + |Vus|2 + |Vub|2
]

= 0.9999(6) [0.06%] . (4.2)

This result is fully consistent with the standard model. However, within one standard deviation,
new physics at a scaleΛNP >∼ 3TeV cannot be excluded and within three standard deviations, this
scale drops down toΛNP >∼ 2TeV.

4.1 |Vus/Vud| from K, π → µν̄

In 2004, Marciano pointed out a window of opportunity for determining|Vus/Vud| from the
ratio of leptonic decay ratesΓ(K → µν̄(γ))/Γ(π → µν̄(γ)) [17]. CalculatingO(α) radiative cor-
rections to this ratio, he obtained (see update in [11]):

|Vus|
|Vud|

FK

Fπ
= 0.2757(7) [0.25%] . (4.3)

Thus, a precise lattice calculation ofFK/Fπ will allow a high precision determination of|Vus/Vud|.
One needs to determineFK/Fπ to:

• 0.5% to match the uncertainty on|Vus| obtained inK → πℓν decays,

• 0.25% to match the experimental uncertainty inΓ(K → µν̄(γ))/Γ(π → µν̄(γ)).
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Ref. public
atio

n

acti
on, u

nit.

N f mass
ex

tra
p

a→
0

fin
ite

vo
lume

ETM’08 [12] ⋆ ⋆⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆⋆ ⋆⋆

NPLQCD’06 [13] ⋆⋆⋆ ⋆⋆ ⋆⋆⋆ ⋆ ⋆ ⋆⋆⋆

MILC’04-07 [14, 15] ⋆⋆⋆ ⋆⋆ ⋆⋆⋆ ⋆⋆ ⋆⋆⋆ ⋆⋆⋆

HP/UKQCD’07 [16] ⋆⋆⋆ ⋆⋆ ⋆⋆⋆ ⋆ ⋆⋆⋆ ⋆⋆⋆

RBC/UKQCD’08 [5] ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆ ⋆ ⋆⋆⋆

ALV’08 [18] ⋆ ⋆⋆ ⋆⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆⋆

PACS-CS’08 [1] ⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆ ⋆

BMW’08 ⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆

Table 2: Starring of the simulations used to obtain FK/Fπ , according to the criteria put forth in Sec. 3.1.

FK/Fπ is anSU(3)-flavor breaking effect, i.e.

FK/Fπ = 1+O

(

M2
K −M2

π
Λ2

χ

)

(4.4)

and it is the deviation from unity that we are actually calculating, which makes thetarget accuracies
a little less forbidding.

In Table 1 I summarize the parameters and results of all unquenched lattice calculation of
FK/Fπ . The corresponding consumer report is given in Table 2.

Of all these calculations, the most advanced is that of MILC [14, 15], butthe calculation of the
BMW collaboration, presented at this conference by S. Dürr, should rival it once completed. The
calculation of PACS-CS [1], performed very close to the physical up anddown quark mass holds
great promise. However, as it stands, it is missing a continuum extrapolationand may also suffer
from significant finite-volume errors.

To illustrate lattice results forFK/Fπ , let me briefly present those of BMW. The calculations
are performed in volumes up to 4 fm, with pions as light as 190 MeV and lattice spacings down to
0.065 fm. The parameters of the calculation are summarized in Table 1, and details of the ensembles
can be found in [19]. The results are plotted in Fig. 3, as a function ofM2

π in physical units, with
the scale set by theΞ mass as in [19]. The plot shows the extrapolation of the results forFK/Fπ

in M2
π to the physical point. A large variety of functional forms have been tried, ranging from

NLO SU(2) ChPT to polynomial expansions. Three different cuts on pion mass have been made:
Mπ < 420MeV, 470 MeV and 600 MeV. The continuum and mass extrapolations are combined,
by allowing for the parameters of the functional mass dependence to acquire a2 or a corrections.
Finite-volume effects are subtracted at two-loops in ChPT, using the resultsof [20]. The procedure
for estimating statistical and systematic uncertainties is very similar to that in [19]. It should be
noted that the shift inFK/Fπ from the lightest pion mass to the physical point is less than 2%. The
preliminary result is given in Table 1.

Unquenched, lattice results forFK/Fπ are summarized in Fig. 4, where my average for this
quantity, obtained as explained in Sec. 3.2, is also given. This average includes only the published
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0.1 0.2 0.3

Mπ
2
[GeV

2
]

1.05

1.1

1.15

1.2

1.25

F K
/F

π

   a≈0.125 fm
   a≈0.085 fm
   a≈0.065 fm
   a=0

Figure 3: FK/Fπ versus M2
π in physical units, as presented by BMW at this conference. The different symbols

correspond to different lattice spacings, as indicated in the plot legend. The curves represent the result of a
combined chiral and continuum extrapolation fit for each lattice spacing, as well as in the continuum limit.
The results have already been interpolated in strange quarkmass to the physical value. The particular fit
shown corresponds to a NLO, SU(3) ChPT fit with Mπ < 470MeVand a2 discretization errors.

1.15 1.2 1.25 1.3 1.35
F

K
/Fπ

N
f
 = 2

N
f
 = 2+1

 (MILC)

N
f
 = 2+1

ETMC ’07

ETMC ’08

NPLQCD ’06 (*)

HPQCD/
UKQCD ’07 (*)

MILC ’07 (*)

RBC/UKQCD ’08 (*)

PACS-CS ’08

BMW ’08

F
K
/Fπ = 1.194(3)(10)

ALV ’08

Figure 4: Summary of unquenched lattice results for FK/Fπ , together with my average. The latter is
obtained as described in Sec. 3.2 and in the text. The resultsmarked with a “(*)” are those included in the
average. The smallest error bar on each point is the statistical error and the larger one, the statistical and
systematic errors combined in quadrature. The references are as in Table 1.

Nf = 2+ 1 results [13 – 16, 5] in which many systematic uncertainties have been estimated. The
systematic error is taken from [15]. The total uncertainty on this quantity isδ (FK/Fπ)lat = 0.8%.
This corresponds to an uncertainty ofδ (FK/Fπ −1)lat ≃ 5% on the calculatedSU(3)-flavor break-
ing effect, which is much better than the accuracy obtained on theSU(3)-flavor breaking in the
form factor forK → πℓν , δ f+(0) ≃ 15%. Nevertheless, this uncertainty still leads to a larger the-
ory error in the determination of|Vus|, i.e. 0.8% vs 0.5%. SinceFK/Fπ is a straightfoward quantity
to calculate, one may expect steady improvements in its lattice determination, especially in light of
the recent progress by PACS-CS [1].
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4.2 |Vus| from K → πℓν

K → πℓν decays provide an alternative way to determine|Vus|. This measurement requires the
theoretical calculation of the vector form factor,f+(q2), defined through:

〈π+(p′)|ūγµs|K̄0(p)〉 = (p+ p′−q
M2

K −M2
π

q2 )µ f+(q2)+qµ
M2

K −M2
π

q2 f0(q
2) , (4.5)

with q = p− p′. The best precision is currently obtained by measuring the form factor shape in
experiment and extracting, from the total rate [9],

|Vus|× f+(0) = 0.21664(48) [0.22%] . (4.6)

The experimental error is of similar size as in the ratio of leptonic kaon to pion decay rates. To
fully exploit the experimental results requires a determination off+(0) to 0.22%.

To the extent that it is applicable here, the theoretical framework for attacking this problem is
SU(3) ChPT [2, 21]. The chiral expansion forf+(0) is given by:

f+(0) = 1+ f2 + f4 + · · · , (4.7)

where the Ademollo-Gatto theorem [22] and ChPT yield:

f2 = O

(

(M2
K −M2

π)2

M2
KΛ2

χ

)

= −0.023. (4.8)

Thus, there are no contributions for theO(p4) LECs and this NLO contribution is fully determined
by MK , Mπ andFπ .

This means that a sub-percent level determination off+(0) requires a calculation of NNLO
and higher corrections, since

∆ f ≡ f+(0)−1− f2 = O

(

(M2
K −M2

π)2

Λ4
χ

)

∼ 3% (4.9)

is comparable in size tof2. To fully exploit the experimental accuary “only” requires an accuracy
of 7% in the calculation of∆ f .

What is known aboutf4 and more generally∆ f ? The NNLO chiral logs have been com-
puted [23, 24], and they requireO(p6) LECs for renormalization. Estimates have been made
of these LECs [24 – 27] and in [24] it is shown that they can be determined from the slope and
curvature of f+(q2). The reference value for∆ f is still taken to be the quark model result,
∆ f = −0.016(8) [21].

In Table 3, I summarize the parameters and results of all unquenched lattice calculations of
f+(0). The corresponding consumer report is given in Table 4.

The lattice methodology for the calculation off+(0)−1 was set forth in [33]. It consists of
three main steps:

1. Use a double ratio of three-point functions to obtain:

f0(q
2
max) =

2
√

MKMπ

MK +Mπ

〈π|V0|K〉〈K|V0|π〉
〈π|V0|π〉〈K|V0|K〉 . (4.10)

This yields a determination off0(q2
max) with a statistical error less than about 0.1%!
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Ref. Nf action a[fm] L[fm]
Mmin

π [MeV]

typ/val
f+(0)

JLQCD’05 [28] 2 NP SW 0.09 1.8 550/550 0.967(6)
RBC’06 [29] 2 DWF 0.12 2.5 490/490 0.968(9)(6)
ETM’08 [30] 2 tmQCD 0.11 2.7 260/260 0.957(5)
FNAL/MILC’04 [31] 2+1 KS+Wil 0.962(6)(9)
RBC/UKQCD’07[32] 2+1 DWF 0.11 1.8, 2.8 290/240 0.9644(33)(34)(14)

Table 3: Parameters of the simulations used by various collaborations for calculating f+(0), together with
their result for that quantity. The description of the columns can be inferred from the one given in Table 1.

Ref. public
atio

n

acti
on, u

nit.

N f mass
ex

tra
p

a→
0

fin
ite

vo
lume

JLQCD’05 [28] ⋆ ⋆⋆⋆ ⋆⋆ ⋆ ⋆ ⋆⋆⋆

RBC’06 [29] ⋆⋆⋆ ⋆⋆⋆ ⋆⋆ ⋆ ⋆ ⋆⋆⋆

ETM’08 [30] ⋆ ⋆⋆⋆ ⋆⋆ ⋆⋆ ⋆ ⋆⋆

FNAL/MILC’04 [31] ⋆ ⋆⋆ ⋆⋆⋆

RBC/UKQCD’07[32] ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆ ⋆ ⋆⋆⋆

Table 4: Starring of the simulations used to obtain f+(0), according to the criteria put forth in Sec. 3.1.

2. Computef0(q2) at variousq2 and use an ansatz to interpolate and getf+(0) = f0(0).

3. Interpolate/extrapolate in light quark mass to the physical mass point.

RBC/UKQCD [32] actually combine steps 2 and 3, using the functional form:

f0(q
2;MK ,Mπ) =

1+ f2(MK ,Mπ)+(M2
K −M2

π)2(A0 +A1(M2
K +M2

π))

1−q2/(M0 +M1(M2
K +M2

π))2
, (4.11)

whereA0, A1, M0 andM1 are parameters and where a polynomial ansatz was made for NNLO terms.
This combined fit is shown in the two panels of Fig. 5. Their results fit 1+ f2(MK ,Mπ)+ NNLO
well, though their fits do not take correlations into account. The claim that theyare sensitive
to NNLO effects seems to be justified. Moreover, the extrapolated result is only two standard
deviations below the result obtained at their lightest pion mass and the claimed error on f+(0)−1
is a rather conservative 14%. The caveats are thatms is approximately 15% too high and the
calculations were performed at a single, rather coarse lattice spacing ofa = 0.114(2) fm, meaning
that discretizations errors can only be guessed. Nevertheless, this is thefirst convincing lattice
calculation off+(0)−1.

Lattice and non-lattice results forf+(0) are summarized in Fig. 6, together with the “average”
which I obtain by copying the result of [32]. The total uncertainty onf+(0) is δ f+(0)lat = 0.5%.
This means thatK → πℓν decays still give the best accuracy for|Vus|. Moreover, one can anticipate
that the current error,δ ( f+(0)− 1)lat = 14% will be reduced thanks to the use of: stochastic
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Figure 5: Combined q2 and chiral fit of f0(q2) to Eq. (4.11) by RBC/UKQCD ’08 [32]. The left panel
displays the lattice values of f0(q2) vs q2, together with the fit curve obtained at the physical values of Mπ
and MK . The lattice points were shifted in pion and kaon mass at fixedq2 using the fit result. The right panel
displays the extrapolation of f+(0) = f0(0) in M2

π to physical pion mass.

0.94 0.96 0.98 1 1.02 1.04

f
+

K
0π−

(0)

RBC/UKQCD ’07 (*)

FNAL/MILC ’04

RBC ’06

JLQCD ’05

SPQcdR ’04N
f
 = 0

N
f
 = 2

N
f
 = 2+1

Leutwyler & Roos ’84

Bijnens & Talavera ’03

Jamin et al ’05

Cirigliano et al ’05

1 + f
2

f
+

K
0π−

(0) = 0.964(3)(4)

Figure 6: Summary of lattice results for f+(0), together with the results obtained in various models. Also
given is my average of the unquenched lattice resutls. The latter is obtained as described in Sec. 3.2 and in
the text. The results marked with a “(*)” are those included in the average. The smallest error bar on each
point is the statistical error and the larger one, the statistical and systematic errors combined in quadrature.
The references for the lattice works are as in Table 3 with, inaddition, SPQcdR ’04 [33]. The others are
Leutwyler and Roos ’84 [21], Bijnens and Talavera ’03 [24], Jamin et al ’05 [25], Cirigliano et al ’05 [26].

sources, as used in [34, 35]; partially twisted boundary conditions [36,37], applied to form factors
in [34, 35, 38 – 40], which enable to determinef+(q2) directly atq2 = 0 [39, 35].

5. K → ππ decays on the lattice

The phenomenology ofK → ππ decays is extremely rich, and has been highly instrumental
in developing the standard model. In the isospin limit, the amplitudes for these decays can be
decomposed in terms of amplitudesAI eiδI , I = 0,2, whereI is the isospin of the final two-pion
state andδI is the strong scattering phase in that channel. CP violation implies thatA∗

I 6= AI . CP
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violation occurs in two ways inKL decays.KL is mostly CP odd, and decays predominently into
three pions. But it has a small CP even component, through which it can alsodecay into two pions.
This process is known as indirect CP violation, and is parametrized by [41 –43]:

ε =
T[KL → (ππ)I=0]

T[KS→ (ππ)I=0]
≃ eiφε sinφε

(

ImM12

∆MK
+ξ
)

, (5.1)

with ξ = ImA0/ReA0, ∆MK ≡ MKL −MKS andM12 to be defined below.KL decays can violate
CP through another channel, by having its CP odd component decay directly into two pions. This
process is known as direct CP violation, and is parametrized by [41]:

ε ′ =
1√
2

T[Ks → (ππ)I=2]

T[KS→ (ππ)I=0]

[

T[KL → (ππ)I=2]

T[KS→ (ππ)I=2]
− T[KL → (ππ)I=0]

T[KS→ (ππ)I=0]

]

≃ 1√
2

ei(π/2+δ2−δ0)
ReA2

ReA0

[

ImA2

ReA2
− ImA0

ReA0

]

. (5.2)

Experimentally a lot is known about these different processes [11]. TheKL-KS mass difference
is measured to high precision, i.e.∆MK = (3.483±0.006)×10−12MeV [0.2%]. K → ππ decays
exhibit a strong enhancement of theI = 0 channel over theI = 2 channel,|A0/A2| ≃ 22.2, known as
the∆I = 1/2 rule, which is still in need of an explanation after over forty years. The parameter for
indirect CP violation has also been measured to high accuracy,|ε|= (2.229±0.012) ·10−3 [0.5%],
with a phaseφε = (43.5± 0.7)o [1.6%]. And after an experimental effort of nearly thirty years,
direct CP violation was also measured, yielding Re(ε ′/ε) = (1.65±0.26) ·10−3 [16%].

5.1 K0-K̄0 mixing in the standard model andBK

K0-K̄0 mixing is responsible for theKL-KS mass difference as well as for indirect CP violation
in K → ππ. In the standard model, the CP violating contribution occurs through a local∆S= 2,
four-quark operator, once the heavy, standard model degrees of freedom are integrated out. The
corresponding amplitude is

2MKM∗
12 = 〈K̄0|H ∆S=2

eff |K0〉 = CSM
1 (µ)〈K̄0|O1(µ)|K0〉 ,

whereCSM
1 is a short-distance Wilson coefficient and where

O1 = (s̄d)V−A(s̄d)V−A and 〈K̄0|O1(µ)|K0〉 =
16
3

M2
KF2

KBK(µ) . (5.3)

In terms of theses quantities, a revised [42, 43] standard model analysis [44] yields:

|ε| ≃ κεCε B̂K
[

Im(λ ∗2
t )ηttS0(xt)+2Im(λ ∗

t λ ∗
c )ηctS0(xc,xt)+ Im(λ ∗2

c )ηccS0(xc)
]

, (5.4)

whereCε is determined by well measured quantities,B̂K = CSM
1 (µ)BK(µ) is the renormalization-

group invariantB-parameter,λq ≡VqdV∗
qs andηqq′ , S0 are short-distance quantities.κε parametrizes

the corrections to the standard analysis [44], which arise from
√

2sinφε andξ in Eq. (5.1) at leading
order. This approximation is not necessary and should not be used forprecision tests of the SM
onceξ is known better. A rough estimate yieldsκε = 0.92(2) [43], which implies an 8± 2%
downward shift in the SM prediction forε. From Eq. (5.4), it is clear that a measurement of|ε| and
a determination ofBK imposes contraints on Imλ ∗2

t , Imλ ∗2
c and Imλ ∗

t λ ∗
c , as shown in Fig. 7.
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Figure 7: Constraints on the summit(ρ̄, η̄) of the unitarity triangle from a global CKM fit [10].

Given how accurately|ε| is measured, one may wonder why the constraint that it gives on
the summit of the triangle is not any better. To help answer this question, in Fig. 8I display SM
predictions for|ε| obtained in different ways. The starting point is a global CKM fit using Eq.(5.4),
in which the experimental measurement for|ε| is not included and wherêBK = 0.723(11)(35) [5%]

(from Fig. 9) and|Vcb| = 0.04059(38)(58) [1.7%] [10]. The topmost theoretical prediction for|ε|
is obtained from this global fit, allowing all quantities to fluctuate within their errorbars.2 The
next result is obtained by freezing|Vcb| to its central value. The third value results from fixingBK

to its central value. The fourth is obtained by freezing both|Vcb| andBK , and the fifth by fixing
BK to its central value and the four CKM parameters to their best global fit values. The last is the
experimental measurement quoted above.

As the second point indicates, a determination of|Vcb| to infinite accuracy only reduces the
uncertainty on the prediction for|ε| from 10% to 9%. Significantly improving the accuracy onBK

has a similar effect, since the uncertainty on|ε| is also 9% in that case. The fourth point indicates
that the uncertainty coming from sources other thanBK and|Vcb| is a little less than 8%. It is only
when the uncertainties onBK and CKM parameters are assumed to be zero that the error on the SM
prediction for|ε| falls to 5% . The latter is due to perturbative uncertainties and to the error onκε .

It is interesting to note that the SM prediction for|ε| is now about 18% below the experimental
value, down from what it was until recently. The decrease is mainly due to the fact that the central
value forB̂K has dropped by more than 15% over the last decade (see discussion below and caveats)
and to the presence of the correction related toκε in Eq. (5.4). This potential tension between theory
and observation has led the authors of [45, 43, 46] to investigate new CP violating contributions
to ∆F = 2 observables. For the moment, as the top point in Fig. 8 indicates, the discrepancy is
about two standard deviations. However, if uncertainties onBK and on CKM parameters improve
substantially, this discrepancy could become significant, as the fifth point ofFig. 8 indicates.

BK is a quantity which has a long history on and off the lattice. However, because of space con-
straints, in Table 5 I only summarize the parameters and results of unquenched lattice calculations.
The corresponding consumer report is given in Table 6.

2Systematic errors due to theory are assumed to have agaussiandistribution, so that the deviation of the predicted
from the measured|ε| can be counted in standard deviations.
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Figure 8: Standard model predictions for|ε|, using results from global CKM fits by CKMfitter [10, 47],
compared to experiment. The various predictions are obtained by fixing different inputs to their central
values, as described in the plot legend and in the text.

Ref. Nf action a[fm] L[fm]
Mmin

π [MeV]

typ/val
B̂K

JLQCD’08 [48] 2 Overlap 0.12 1.9 290/290 0.734(5)(55)
ETM’08 [49] 2 OS/tmQCD 0.07,0.09 2.1,2.7 300/300 0.78(3)
HPQCD/
UKQCD’06 [50] 2+1 KSHYP

MILC 0.125 2.5 460/360 0.85(2)(18)

RBC/UKQCD
’07-08 [51, 5] 2+1 DWF 0.11 1.8,2.8 290/240 0.717(14)(35)

Bae et al ’08 [52] 2+1 KSHYP
MILC >∼ 0.06 4 300/240 δ B̂K → 3%

Table 5: Parameters of the simulations used by various collaborations for calculating the renormalization
group invariant parameter̂BK , together with their result for that quantity. The values ofB̂K in the table have
been obtained at NLO from the RI/MOM orMS-NDR values given in the papers. The description of the
columns can be inferred from the one given in Table 1.

At this conference, A. Vladikas presented new, preliminary results forBK from ETM [49].
Their calculation makes use of Osterwalder-Seiler valence quarks on the ETM, Nf = 2, tmQCD
seas to ensure automaticO(a)-improvement as well as multiplicative renormalization of the∆S= 2,
four-quark operator. This implies that their calculation suffers fromO(a2) unitarity violations,
which must be controlled. Their plan is to use ETM’s three lattice spacings,a ≃ 0.07, 0.09,
0.010 fm to extrapolate to the continuum limit. For the moment, though, all results areobtained
from simulations performed ata ≃ 0.09fm. They extrapolate in up and down quark mass using
NLO, partially-quenchedSU(2) ChPT [4, 5] and interpolate in valence strange quark mass linearly.
Note that the extrapolated value ofBK is only ∼ 3% below its value at the lightest up and down
quark mass, suggesting that this extrapolation is well controlled. The renormalization is performed
nonperturbatively in the RI/MOM scheme [53]. The continuum limit and finite-volume corrections
are still missing. Discretization induced unitarity violations will have to be investigated.

Unquenched, lattice results forB̂K are summarized in Fig. 9, where my average for this quan-
tity, obtained as explained in Sec. 3.2, is also given. Only the twoNf = 2+ 1 results [50, 51, 5]
are taken into account in this average. The systematic error is taken from [51, 5]. However, each
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Ref. public
atio

n

acti
on, u

nit.

N f mass
ex

tra
p

a→
0

fin
ite

vo
lume

re
norm

JLQCD’08 [48] ⋆⋆⋆ ⋆⋆⋆ ⋆⋆ ⋆⋆ ⋆ ⋆ ⋆⋆

ETM’08 [49] ⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆

HPQCD/
UKQCD’06 [50] ⋆⋆⋆ ⋆⋆ ⋆⋆⋆ ⋆ ⋆ ⋆⋆⋆ ⋆

RBC/UKQCD
’07-08 [51, 5] ⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆⋆ ⋆ ⋆⋆⋆ ⋆⋆

Table 6: Starring of the simulations used to obtain BK , according to the criteria put forth in Sec. 3.1.
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  = 0.723(11)(35)

RBC/UKQCD ’08 (*)

JLQCD ’08

ETM ’08

HPQCD/UKQCD ’06 (*)

N
f
 = 2

N
f
 = 2 + 1

Figure 9: Summary of unquenched lattice results for the renormalization group invariantB̂K , together with
my average. The latter is obtained as described in Sec. 3.2 and in the text. The smallest error bar on each
point is the statistical error and the larger one, the statistical and systematic errors combined in quadrature.
The results marked with a “(*)” are those included in the average. The references are as in Table 5.

calculation was performed at a single, rather coarse value of the lattice spacing. This means that
these results, and thus the average, suffer from a poorly controlled discretization errors.

As noted above, the value ofBK has come down quite significantly compared to JLQCD’s
standard quenched value of a decade ago [54]. In particular,(BK)

Nf =2+1
RBC /(BK)

Nf =0
JLQCD = 0.83(8).

This drop cannot really be ascribed to the inclusion of sea quark effects, since comparably low
results were obtained in the quenched approximation at comparable lattice spacings [55]. However
there, a continuum extrapolation based on two calculations performed ata≃ 0.10fm and 0.067 fm
increased the result to(BK)

Nf =0
RBC /(BK)

Nf =0
JLQCD = 0.90(9). Thus, it is very important to clarify this

situation by investigating the continuum limit ofBK in 2+1 flavor simulations.

The total lattice error onBK is δBlat
K = 5%, which is comparable to the other uncertainties in

the standard model prediction forε. As discussed above, to improve this prediction and possibly
reveal new physics, we must not only reduce the error onBK , but also improve the determination
of CKM parameters, of the correction related toκε and eventually of the short distance QCD
coefficients.
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6. Conclusion

Lattice QCD simulations have made tremendous progress in the last few years.2+ 1 flavor
lattice calculations with pion masses as low asMπ ∼ 190MeV in(4fm)3 volumes, and lattice spac-
ings down to∼ 0.065fm have already been performed [19]. Moreover, as PACS-CS has shown [1],
simulations at physicalMπ are around the corner. Thus, it is has now become possible to reach the
physical QCD point (Mπ ≃ 135MeV,a→ 0, L → ∞) in a controlled fashion.

Quantities such asFK/Fπ and f K0π−
+ (0) are already being computed with percent or better

accuracy and are having an important impact on SM and BSM tests. Quantitiessuch asBK are
reaching the sub 10% accuracy level and have errors which match thosefrom other sources. Calcu-
lations ofε ′/ε and the∆I = 1/2 enhancement still have 100% uncertainties despite the impressive
Nf = 2+ 1 RBC/UKQCD effort [56], but perhaps not for long [56]. Many quantities are still
missing continuum extrapolations.

NLO SU(3) ChPT appear to be having trouble at the physical strange quark mass, atleast in
the presence of heavier up and down quarks, whereasSU(2) ChPT performs better. However, these
inferences require further investigation, in particular once continuum limits have been investigated.

Concerning the extrapolations and interpolations required to reach the physical mass point
(mud,ms) = (mph

ud,m
ph
s ), my advice is to keep an open mind and to pick the approach which gives

the lowest combined statistical and systematic error.
To conclude, the age of precision, nonperturbative QCD calculations is dawning, and the next

few years should bring many exciting results.
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