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We report on recent progress in employing the Highly Improved Staggered Quark (HISQ) action

introduced by the HPQCD/UKQCD collaboration in simulations with dynamical fermions. The

HISQ action is an ordera2 Symanzik-improved action with further suppressed taste symmetry

violations. The improvement in taste symmetry is achieved by introducing Fat7 smearing of the

original gauge links and reunitarization (projection to anelement of U(3) or SU(3)) followed

by Asq-type smearing. Major challenges for calculating thefermion force are related to the

reunitarization step. We present a preliminary study of theHISQ action on two 2+1+1 flavor

ensembles with the lattice spacing roughly equivalent to the MILC asqtada = 0.125 and 0.09 fm

ensembles.
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HISQ action in dynamical simulations A. Bazavov

1. Introduction

The Highly Improved Staggered Quark (HISQ) action developed in Ref. [1] is an O(a2)

Symanzik-improved action for which additional suppression of taste-exchange interactions is
achieved by replacing the original gauge linksU in the Dirac operator by

U → X = F2U F1U (1.1)

where intermediate sets of linksV, W, X are defined as

• F1 – smearing level 1 (Fat 7):V = F1U ,

• U – reunitarization:W = U V,

• F2 – smearing level 2 (Asq):X = F2W.

A new feature of the HISQ action compared with asqtad is the reunitarization step that gives
an extra contribution to the fermion force.

2. Fermion force and reunitarization

In molecular dynamics simulations we are sampling an ensemble of gauge configurations
weighted by exp(−S), where the actionS= Sg+Sf is split into gauge,Sg, and fermionic,Sf , parts.
As usual, the integration over Grassmann variables is performed and then aset of pseudo-fermion
fieldsΦ is introduced, resulting in the fermionic part of the formSf ∼ 〈Φ|(M†(U)M(U))−Nf /4|Φ〉.
One can consult the details of the algorithm in [2] and recent ideas on efficient evaluation of the
fermion force for HISQ in [3].

The fermion force is calculated by taking the derivative of the actionSf with respect to funda-
mental gauge linksU using the chain rule along the lines of Refs. [3], [4]. Schematically:

∂Sf

∂U
=

∂Sf

∂X
∂X
∂W

∂W
∂V

∂V
∂U

. (2.1)

The following parts are the same as for the asqtad action:∂Sf /∂X, ∂X/∂W, ∂V/∂U , while the
contribution from the reunitarization step∂W/∂V is new.

We have experimented with projecting to SU(3) and U(3) groups and foundthat pion spectrum
measurements with valence HISQ and sea asqtad quarks show no difference, as one would expect
on physical grounds. Therefore in our dynamical HISQ simulations we always perform projection
to the group U(3). While keeping the physics the same, this has two advantages:

1. Different methods of projection, namely polar decomposition and trace maximization, give
identical results. (The same is not true in the SU(3) case.)

2. When projecting from U(3) to SU(3) by making the determinant of the matrix equal to 1, one
needs to choose among three possibilities for the phase. In dynamical simulations one needs
to track this phase to make sure it changes smoothly for each link. Otherwise discontinuous
changes lead to rapid changes in the action similar to those we describe below.
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We adopt the following method of U(3) projection. For a complex matrixV the matrixH =

V†V is Hermitian andW = VH−1/2 is unitary. We first calculateH−1/2 by using the Cayley-
Hamilton theorem in a manner similar to the approach in Refs. [5], [6]:

H−1/2 = f0I+ f1H + f2H2, (2.2)

where fi are functions ofci = Tr(H i+1)/(i + 1), i = 0,1,2. To evaluate the derivative ofH−1/2

with respect toH one needs to know the derivative offi with respect toH. This can be performed
analytically by applying the chain rule and making use of the coefficients explicitly calculated in
Ref. [6]. After ∂H−1/2/∂H is known we have trivially:

∂W
∂V

=
∂V
∂V

H−1/2 +V
∂H−1/2

∂H
∂H
∂V

. (2.3)

(We write Eq. (2.3) schematically, but in fact each matrix-matrix derivative isa rank 4 tensor with
indices contracted in such a way that the resulting expression on the right hand side is a rank
4 tensor again. An excellent review on how to deal with such derivativescan be found in [4].)
Thus the entire derivation can be performed analytically. (We also implementeda finite difference
scheme and rational function approximation but found them much less accurate than the procedure
described here.)

To understand the possible behaviour of∂W/∂V qualitatively let us consider the U(1) case for
the moment. ThenV = r eiθ andW = V(V†V)−1/2 = eiθ , and the derivative

∂W
∂V

=

(

∂W
∂V

)

V†

=
∂ (W,V†)

∂ (V,V†)
=

∂ (W,V†)

∂ (r,θ)

∂ (r,θ)

∂ (V,V†)
=

1
2r

(2.4)

is large whenr is small, as might happen when the linksU are locally disordered, and the first
stage of smearing results in a small smeared linkV. For the matrix case the derivative is dominated
by the smallest eigenvalue ofV. To derive Eq. (2.4) we applied the method of Jacobians and the
notation is similar to the one used in Thermodynamics.

3. Dynamical HISQ simulations

We run the RHMC algorithm with five pseudofermion fields. The first pseudofermion im-
plements the ratio of the determinants for two light and one strange quark to the determinant for
three unphysical heavy quarks (“UHQ”) with massamUHQ = 0.2. The next three each implement
the determinant for one UHQ, and the final pseudofermion implements a physical charm quark,
including the mass correction to the Naik term to first order inm.

At the time we did our studies, one loop fermion corrections to the gauge action were not yet
known, so we used the coefficients in our gauge action appropriate for the asqtad fermion action.
(The coefficients of the gauge action with 1-loop corrections due to HISQ have been calculated and
are now available [8].)

Our integration algorithm is the “3G1F” (“three gauge steps, one fermion step”) algorithm,
with the Omelyan integrator used for both gauge and fermion forces. Our convention for the step
size is that each application of the fermion force is one step. Note that since the Omelyan integrator
shifts the time at which the force is calculated alternately forward and backward, the full period in
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N3
s ×Nt Conf. β aml ams amc ∆t a, fm

203×64 40 6.75 0.010 0.050 0.600 0.04167 0.127
283×96 50 7.07 0.007 0.035 0.420 0.03125 0.093
483×144 6 7.47 0.004 0.020 0.240 0.01250 0.060

Table 1: Dynamical HISQ 2+1+1 ensembles.
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Figure 1: The histogram of the change in the action.

simulation time of the integrator is twice what we call the step size. For example, when we run
a fifty-step trajectory this means 25 cycles of the Omelyan integrator, involving50 fermion force
calculations and 150 gauge force calculations. The parameters of the three 2+1+1 flavor ensembles
we have run are compiled in Table 1. The lattice spacing is calculated by measuring the ratior1/a
from the static quark potential and using the valuer1 = 0.318 fm [7].

While most trajectories ran smoothly, we found many trajectories with large jumps inthe
action as the integration proceeded. In Fig. 1 we show the histogram of the change in the action,
plotted on a logarithmic scale, over several time units for thea= 0.127 fm ensemble. The long tail
“outliers” indicate instantaneous jumps in the action, which we investigate further.

Let us denote the norm of a matrixA by:

||A|| =
√

∑
i, j

|Ai j |2.

When we calculate the fermion force at each time step as an anti-Hermitian matrix defined on each
link, we evaluate its norm and find the maximum value over the lattice:||F||max. Also, at each time
step we calculate the determinant ofV (Fat7 smeared) links and find the minimum value over the
lattice: |detV|min. Time histories of these two quantities are shown in Fig. 2. Large values of the
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Figure 2: The time history of|detV|min (top) and||F ||max (bottom) for thea = 0.127 fm ensemble during 5
time units (= 5×24= 120 time steps).

fermion force accompany small values of the determinant (or small eigenvalues) of Fat7 smeared
links. Thus, when calculating smeared links by adding different paths onemay by chance produce
a matrixV with an eigenvalue close to 0, which in turn leads to a large derivativedW/dV (as in the
U(1) example considered earlier) that results in a large fermion force. Our integration algorithm
has a finite step size, so it is not able to integrate such “spikes” in the force smoothly, leading to
instantaneous jumps in the action that we see as “outliers” in the action histogramFig. 1.

We investigated how this situation changes when we go to finer (smaller lattice spacing) en-
sembles. Since configurations become smoother, spikes in the force becomeless severe, as seen in
Fig. 3.

4. Pion splittings on dynamical HISQ configurations

The effect of suppression of the taste-exchange interactions in HISQ was investigated in [1]
by measuring the pion spectrum with valence HISQ on sea asqtad configurations. Here we report
on similar measurements performed on dynamical HISQ configurations for thefirst two ensembles
of Table 1.

It is convenient to define a dimensionless quantity which is almost independent of quark mass:

∆ ≡ (M2
π −M2

G)r2
1, (4.1)

whereMG corresponds to the Goldstone pion andMπ refers to one of the other seven pion tastes in
Tables 2 and 3. We calculate∆ for comparable asqtad and HISQ configurations, and then the ratio

R≡
∆ASQ

∆HISQ
(4.2)
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Figure 3: Fermion force||F ||max for different ensembles versus time in time units (1 time unit corresponds
to 24 steps fora = 0.127, 32 steps fora = 0.093 and 80 steps fora = 0.060 ensemble).

Pion taste r1MASQ
π (658) r1MHISQ

π (40) ∆ASQ ∆HISQ R

γ5 0.2244(02) 0.1889(07)
γ0γ5 0.2815(11) 0.2071(27) 0.029(1) 0.0072(11) 4.0(6)
γiγ5 0.2822(05) 0.2058(10) 0.029(0) 0.0067(05) 4.4(3)
γiγ j 0.3134(20) 0.2224(33) 0.048(1) 0.0138(15) 3.5(4)
γiγ0 0.3126(11) 0.2188(19) 0.047(1) 0.0122(08) 3.9(3)
γi 0.3347(28) 0.2306(56) 0.062(2) 0.0175(26) 3.5(5)
γ0 0.3373(15) 0.2311(22) 0.063(1) 0.0178(10) 3.6(2)
I 0.359(5) 0.252(12) 0.079(4) 0.0280(61) 2.8(6)

Table 2: Pion spectrum ona = 0.127 fm HISQ ensemble.

shows how much the splittings decrease when going from asqtad to HISQ. The values ofR for
different pion tastes are shown in the last column of Tables 2 and 3. The statistical errors are rather
large since for HISQ we have about an order of magnitude fewer configurations than for asqtad.
The number of configurations used for measurements is indicated in parentheses in the headers of
the second and third column. The overall trend is however clear and in agreement with Ref. [1]:
about a factor of three improvement in taste symmetry for the HISQ action relative to asqtad.

5. Conclusions

In dynamical HISQ simulations with typical parameters, we found that smearingmay produce
a smeared linkV with a small eigenvalue that dominates the derivative of the reunitarized linkW,
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Pion taste r1MASQ
π (572) r1MHISQ

π (50) ∆ASQ ∆HISQ R

γ5 0.2069(05) 0.1378(08)
γ0γ5 0.2177(10) 0.1420(08) 0.0046(5) 0.0012(4) 4(1)
γiγ5 0.2187(07) 0.1428(08) 0.0050(4) 0.0014(3) 3.6(8)
γiγ j 0.2256(11) 0.1467(21) 0.0081(5) 0.0025(7) 3.2(8)
γiγ0 0.2259(07) 0.1475(11) 0.0082(4) 0.0028(4) 3.0(4)
γi 0.2311(15) 0.1485(16) 0.0106(7) 0.0031(5) 3.5(6)
γ0 0.2318(10) 0.1509(11) 0.0109(5) 0.0038(4) 2.9(3)
I 0.2398(25) 0.1522(27) 0.015(1) 0.0042(9) 3.5(8)

Table 3: Pion spectrum ona = 0.093 fm HISQ ensemble.

dW/dV, and gives a large contribution to the fermion force. Such “spikes” in the force integrated
with finite time steps give “jumps” in the action that decrease the acceptance rateof the RHMC
algorithm. This problem was noted in Ref. [6] and is probably related to topological defects, “dis-
locations” that manifest themselves in plaquettes with low values lying on the tails ofthe plaquette
distribution. We found that going to finer ensembles (smoother gauge configurations) reduces the
number of spikes and partially cures the problem.

On configurations generated with the HISQ action for dynamical quarks wemeasured the
staggered pion spectrum and found that pion splittings decrease by a factor of three or more, con-
firming the result of Ref. [1], where pioneering tests were done with valence HISQ fermions on
configurations with asqtad sea quarks.
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