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Modern graphics hardware is designed for highly parallel numerical tasks and provides signifi-

cant cost and performance benefits. Graphics hardware vendors are now making available devel-

opment tools to support general purpose high performance computing. Nvidia’s CUDA platform,

in particular, offers direct access to graphics hardware through a programming language similar

to C. Using the CUDA platform we have implemented a Wilson-Dirac operator which runs at an

effective 68 Gflops on the Tesla C870. The recently released GeForce GTX 280 runs this same

code at 92 Gflops, and we expect further improvement pending code optimization.
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1. Introduction

For decades, Moore’s law has reliably given a doubling of the number oftransistors per chip
about every two years, a trend that continues to this day. In the past, such increases translated
directly into improved performance for serial code through higher clock rates, larger caches, and
increased exploitation of instruction-level parallelism. Recently, however,such improvements have
yielded diminishing returns, bringing us to the era of multi-core CPUs. For the intrinsically parallel
tasks commonly found in scientific computing, this is a welcome development. Still, it is not
obvious that commodity processors, whose high clock rates and large caches come at the expense
of greater numbers of cores, represent the optimal balance for highly parallel workloads. Graphics
processing units (GPUs), driven by the enormous video game market, represent a different set of
trade-offs. GPUs emphasize very high parallelism and memory bandwidth, arecipe for astounding
performance in many scientific applications.

In lattice gauge theory (LGT), the application of the Wilson-Dirac operator isa performance
critical task and has been shown to map well onto GPU architectures [1, 2].We describe an im-
plementation of the Wilson-Dirac operator which runs at an effective 92 Gflops on the Nvidia
GTX 280 GPU. Our implementation uses Nvidia’s CUDA (Compute Unified Device Architecture)
platform.

CUDA is a C-like programming language and a full software development toolkit [3]. CUDA
provides direct and relatively low-level access to the GPU. Current high-end Nvidia graphics cards
are specifically designed to facilitate general purpose computation throughCUDA. An important
feature, which is available in CUDA but not previous frameworks, is high speed synchronization
and data sharing between threads.

Besides CUDA, several other platforms exist for highly threaded computation. Advanced
Micro Devices (AMD) is another leading vendor of GPUs and has introduced the Stream SDK
toolkit [4]. The Cell processor, originally designed by Sony, Toshiba,and IBM for consumer
applications, is also an attractive target for LGT [5, 6, 7]. Even among mainstream CPUs there is
a trend toward increasing numbers of parallel cores. For example, Intel’s Larrabee architecture is
expected to have tens of cores, blurring the distinction between CPU and GPU architectures [8].
A potential advantage of Nvidia’s CUDA platform is that it may be used to target both GPUs and
multi-core CPUs. Finally, we note that the proposed OpenCL standard [9] describes a programming
model quite similar to CUDA.

2. Hardware

Nvidia produces three lines of graphics cards. The GeForce series serves the lucrative con-
sumer video game market, while the Tesla series targets the high performance computing (HPC)
market. Tesla cards retain the core architecture of the consumer cards but offer more device mem-
ory and greater reliability, at the expense of lower memory bandwidth and increased cost.1 Finally,
Nvidia markets the Quadro line for professional graphics applications.

To date, there have been roughly two generations of CUDA-enabled GPUs. The flagship
consumer cards of the previous and current generation are the GeForce 8800 GTX and the GTX

1The Tesla series also lacks video output.
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Card Cores Bandwidth (GB/s) Gflops Device Memory

GeForce 8800 GTX 128 86.4 518 768 MB
Tesla C870 128 76.8 518 1.5 GB
GeForce GTX 280 240 141.7 933 1 GB
Tesla C1060 240 102 933 4 GB

Table 1: Specifications of representative Nvidia cards. The Tesla S1070 (not listed) is a 1U unit, containing
the equivalent of four Tesla C1060 cards.

Figure 1: Architecture of a modern Nvidia graphics card. In Nvidia’s nomenclature, cores are calledstream
processors (or scalar processors), and in current GPUs each multiprocessor has eight such cores.

280, paralleled in the HPC line by the Tesla C870 and C1060 (variants are also available in a
single rack-mountable unit containing multiple GPUs). See Table 1 for detailed specifications. In
Section 7 below, we benchmark our code on both the Tesla C870 and GeForce GTX 280. The Tesla
C1060 was not available for benchmarking at the time of the conference.

A modern Nvidia GPU contains many multiprocessors, each composed of several cores, as
illustrated in Fig. 1. For example, the GPU in the Tesla C1060 contains 30 multiprocessors and
a total of 240 cores. Within a multiprocessor, cores are allocated local registers and have access
to a fast shared memory. In addition, each multiprocessor provides two smallread-only caches: a
constant cache, and a texture cache to speed up global device reads.Primary storage on the card
is provided bydevice memory, which is shared among all multiprocessors and has a relatively high
latency. However, this latency can often be hidden by having a large number of threads ready
to execute. A very important consideration is that the highest bandwidth from device memory is
achieved when accesses are coalesced; this occurs when groups of16 threads access a contiguous,
properly aligned memory region.2

2This requirement has been relaxed somewhat in the more recent generation of cards.
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3. The CUDA programming model

The CUDA platform provides direct access to the GPU through a C-like programming lan-
guage with minimal extensions. The CUDA platform includes a compiler that targets the GPU, as
well as a hardware driver and a runtime library. Higher level libraries are also provided, including
optimized BLAS and FFT implementations.

A CUDA application works by spawning a very large number of threads, asmany as tens of
thousands at once, which execute in parallel. For example, in a LGT application one might assign
one thread to each lattice site. The user specifies the number, organization,and shared memory
usage of the threads when a CUDA kernel is invoked. As an example, consider the CUDA code

dslashKernel <<<gridDim, blockDim, sharedBytes>>> (args);

which invokesdslashKernel(args) for execution by many individual threads on the GPU.
Threads are grouped intothread blocks, and the entire collection of thread blocks is called a
grid. The code above tells the GPU to launch a kernel usinggridDim blocks, each containing
blockDim threads. The compiler is instructed to allocatesharedBytes bytes ofshared mem-
ory to each block. This shared memory allows for rapid communication between threads within a
thread block. CUDA provides primitives to allow synchronization between threads within a thread
block. However, no synchronization is possible between different thread blocks (within a single
kernel invocation).

The GPU will dynamically schedule the thread blocks for execution. In order to hide high
latency operations, it is desirable to have a highmultiprocessor occupancy: each multiprocessor
should have many threads simultaneously loaded and waiting for execution. The challenges to
achieving high multiprocessor occupancy will be discussed in Section 6. The GPU supports condi-
tional execution, but it is highly desirable that groups of 32 threads (athread warp) follow the same
execution path. Otherwise, both execution paths are serialized and executed by the entire warp.

4. Wilson inverter: Main features

We implemented a CUDA kernel, Dslash, which calculates the Wilson-Dirac operator re-
stricted to spinor variables at the even or odd parity sites. We have also implemented an even-odd
preconditioned conjugate gradient (CG) solver.

The action of Dslash and Dslash† on a spinor field is the most compute-intensive part of the
CG inverter. Our CUDA implementation spawns one thread for each site in the (even or odd)
sub-lattice. Performance is limited by memory bandwidth, as is common in LGT applications.
Nonetheless, the GPU achieves a high sustained performance due to the relatively large memory
bandwidth. We have structured the calculation in a manner which helps reduce the amount of
transferred data (e.g., we mostly use 32-bit precision, we gauge fix to the temporal gauge, we
reconstruct the gauge links from only two columns of data, etc.) and maximizesthe overlap of
computation and communication.

The CG algorithm is decomposed into several operations, each of which runs as a separate
CUDA kernel. Besides the Dslash operator, we also require a dot product operation and a variety
of BLAS-like operations. The dot product involves a global sum, which isperformed by the GPU
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in double precision using parallel reduction. In the Wilson-Dirac solver, the largest portion of
compute time is spent in applying the Dslash and Dslash† operators. We find that the whole solver
runs at well over 80 percent of the speed of just its Dslash component. We also emphasize that the
operation of the Wilson-Dirac solver involves negligible data transfer between the device and host
computer.

5. Data layout

We consider a lattice of 3+1 dimensions, splitting the gauge and spinor fields into even and
odd sub-lattices. With three colors and four spin components, spinor fields require 24 floats per
lattice site to store. Gauge fields require 18 floats per link. Following [1], we employ a specialized
data layout. We do so because, as we have mentioned, maximum bandwidth is obtained when
16 consecutive threads (ahalf warp) simultaneously read 16 primitive elements which are packed
contiguously in device memory. The available primitive elements include structures of 1, 2, or 4
packed floats. Our testing indicates that, on current hardware, the bestbandwidth is achieved using
device reads through the texture cache, and usingfloat4 primitives. Spinor objects are composed
of 24 floats, so we use 6 arrays offloat4s to store the entire spinor field. In this way, consecutive
threads can simultaneously access (nearly) consecutive elements from device memory. The gauge
links are stored in 12 floats (before SU(3) reconstruction), requiring 3arrays offloat4s.

Because the lattice sites are split by parity, and because of boundary effects, the half warp of
16 consecutive threads may accessfloat4 objects which are nearly, but not exactly, contiguous
in memory. The texture cache mitigates the performance penalty of imperfect memory accesses.

6. Local storage constraints

Unlike CPUs, the GPU does not provide a large memory cache. Instead, theGPU provides
a relatively small amount of fastshared memory, which is manually managed and shared between
threads. Shared memory is orders of magnitude faster than device memory, so access to the latter
must be minimized. For the Dslash operation, we have found that shared memory alone is not
satisfactory for local data storage, and we therefore employ registers for data storage as well.

For hiding high latency operations it is important to have a high multiprocessor occupancy:
manyactive threads should be simultaneously loaded and ready to execute. Our tests indicate that
192 active threads per multiprocessor is desirable and that performancerapidly degrades with fewer
active threads. The multiprocessor occupancy is determined by the register and shared memory
requirements of the CUDA kernel.

At the hardware level, a single GPU contains many multiprocessors (currently 16 or 30). Each
multiprocessor has a fixed quantity of local storage (registers and shared memory) which is divided
among many active threads. Nvidia’s previous generation GPUs provide 8,192 registers and 16 KB
of shared memory per multiprocessor, while in the more recent generation thenumber of registers
has been increased to 16,384.

What are the local storage requirements for each thread in the Dslash operation? Each thread
must accumulate to a single output spinor, which is composed of 24 floats and should reside in
local storage. In constructing the output spinor, the thread loops over all neighboring sites. In each
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Figure 2: Performance of the preconditioned Wilson
operator(1−κ2DeoDoe).
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Figure 3: Performance of the conjugate gradient in-
verter.

direction, a full spinor and gauge link must be read. The neighboring spinor is immediately pro-
jected into ahalf spinor and requires only 12 floats of local storage. The SU(3) matrix representing
the gauge link requires an additional 18 floats. Thus, at a minimum, 54 floats are required per
thread. If these are to be stored entirely in the 16 KB of shared memory, thenat most 64 threads
would be active on one multiprocessor.3 This number is much smaller than the target, 192, and
would negatively impact performance. Our trick is to use registers for additional data storage. The
GPU has at least 8,192 registers per multiprocessor, providing 32 KB of local storage. Using both
shared memory and registers it is possible to obtain 192 active threads per multiprocessor for the
Dslash kernel.

What are registers exactly? Registers serve the same function on a GPU asthey do on a
CPU. Namely, they appear as explicitly labeled operands in machine code instructions generated
by the compiler. Every active thread on a multiprocessor is allocated a sufficient number of private
registers to execute the CUDA kernel. Unlike shared memory, registers cannot be shared between
threads. Another limitation is that data stored in registers cannot be organized into an array and
dynamically indexed. For example, we store the SU(3) matrix elements in registers by declaring

float g1, g2, g3, ..., g18;

We cannot use loops to express matrix operations on these elements. Writing the full Dslash opera-
tion by hand, and without using loops, would be tedious and error-prone. For this reason, we found
it expedient to automatically generate the lengthy Dslash CUDA code. The Dslash code generator
was written in the Scala programming language.

7. Performance

In Fig. 2, we present performance results for the even-odd preconditioned Wilson-Dirac opera-
tor on a range of different volumes. We find that the performance is only weakly volume-dependent:
for all but the smallest volumes it sustains above 60 GFlops on the C870 and around 90 GFlops on

3The number of active threads must be a multiple of 32, the warp size. A multiple of 64 is recommended.
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the GTX 280. Results for the full CG inverter are shown in Fig. 3. For volumes of reasonable size,
the inverter sustains over 50 GFlops and 80 GFlops on the C870 and GTX 280, respectively. We
have also implemented a BiCGstab inverter that achieves similar performance.

The (GF) label on the plots signify that the gauge-fixing trick was used. This involves fixing the
temporal gauge links to the identity (on all but one time-slice) in order to save memory bandwidth,
and improves performance by about 10 percent. We also save bandwidthby reading only two
columns of each gauge matrix and reconstructing the third on the fly. In all cases, the reported
performance numbers are “effective gigaflops” that may be compared with implementations on
traditional architectures. In particular, the nominal number of operations per lattice site does not
include the extra work done in the SU(3) reconstruction, nor the savings associated with having
trivial links in the time direction.

We note that performance of the GPU code is more than an order of magnitudegreater than
typical SSE-optimized implementations (which generally achieve less than 5 Gflops for Wilson
matrix-vector on a 3.0 GHz quad-core Xeon processor). In addition, thescaling of performance
with volume is relatively constant, as compared to CPU implementations which suffer dramatically
as the local volume falls out of cache. At 80 Gflops sustained CG performance and $450 per board,
the GTX 280 card represents a price-performance ratio of $5.60/Gflops(excluding, of course, the
cost of the host computer).
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