PROCEEDINGS

OF SCIENCE

Blasting through lattice calculations using CUDA

Kipton Barros
Department of Physics, Boston University, Boston, MA 02215
E-mail: kbar r os @u. edy|

Ronald Babich
Department of Physics, Boston University, Boston, MA 02215
E-mail: | babi ch@u. edy|

Richard Brower
Department of Physics, Boston University, Boston, MA 02215
E-mail: pr ower @u. eduy|

Michael A. Clark
Center for Computational Science, Boston University, Boston, MA 02215

E-mail: i kec@u. edy|

Claudio Rebbi*
Department of Physics, Boston University, Boston, MA 02215
E-mail: | ebbi @u. edu|

Modern graphics hardware is designed for highly paralleherical tasks and provides signifi-
cant cost and performance benefits. Graphics hardware rseatmwnow making available devel-
opment tools to support general purpose high performanogating. Nvidia’'s CUDA platform,
in particular, offers direct access to graphics hardwareuigh a programming language similar
to C. Using the CUDA platform we have implemented a Wilsomabioperator which runs at an
effective 68 Gflops on the Tesla C870. The recently releassfebee GTX 280 runs this same
code at 92 Gflops, and we expect further improvement pendidg optimization.

The XXVI International Symposium on Lattice Field Theory
July 14 - 19, 2008
Williamsburg, Virginia, USA

*Speaker.

(© Copyright owned by the author(s) under the terms of the Cre@ymmons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:kbarros@bu.edu
mailto:rbabich@bu.edu
mailto:brower@bu.edu
mailto:mikec@bu.edu
mailto:rebbi@bu.edu

Blasting through lattice calculations using CUDA Claudio Rebbi

1. Introduction

For decades, Moore’s law has reliably given a doubling of the numbteawsistors per chip
about every two years, a trend that continues to this day. In the past,rstreases translated
directly into improved performance for serial code through higher clatést, larger caches, and
increased exploitation of instruction-level parallelism. Recently, howsueh improvements have
yielded diminishing returns, bringing us to the era of multi-core CPUs. For thiasically parallel
tasks commonly found in scientific computing, this is a welcome development. Still, d@tis n
obvious that commodity processors, whose high clock rates and largesceome at the expense
of greater numbers of cores, represent the optimal balance for higtaylgd workloads. Graphics
processing units (GPUSs), driven by the enormous video game markegsegp a different set of
trade-offs. GPUs emphasize very high parallelism and memory bandwidibipe for astounding
performance in many scientific applications.

In lattice gauge theory (LGT), the application of the Wilson-Dirac operatargsrformance
critical task and has been shown to map well onto GPU architectfyrfls [We&Hescribe an im-
plementation of the Wilson-Dirac operator which runs at an effective 98p&fbn the Nvidia
GTX 280 GPU. Our implementation uses Nvidia's CUDA (Compute Unified Devitdhitecture)
platform.

CUDA is a C-like programming language and a full software developmentitgf]k CUDA
provides direct and relatively low-level access to the GPU. Curreht&igl Nvidia graphics cards
are specifically designed to facilitate general purpose computation th@@ug#. An important
feature, which is available in CUDA but not previous frameworks, is hjgded synchronization
and data sharing between threads.

Besides CUDA, several other platforms exist for highly threaded cortipnta Advanced
Micro Devices (AMD) is another leading vendor of GPUs and has intredube Stream SDK
toolkit [l]. The Cell processor, originally designed by Sony, Tosh#rag IBM for consumer
applications, is also an attractive target for LGIT[[5[]6, 7]. Even amongstraimm CPUs there is
a trend toward increasing numbers of parallel cores. For exampleslhtaifabee architecture is
expected to have tens of cores, blurring the distinction between CPU adda@Ritectures|[]8].
A potential advantage of Nvidia’s CUDA platform is that it may be used to tdsgth GPUs and
multi-core CPUs. Finally, we note that the proposed OpenCL stangdard¢@fithes a programming
model quite similar to CUDA.

2. Hardware

Nvidia produces three lines of graphics cards. The GeForce serigssdbe lucrative con-
sumer video game market, while the Tesla series targets the high perforntanpating (HPC)
market. Tesla cards retain the core architecture of the consumer camffebumore device mem-
ory and greater reliability, at the expense of lower memory bandwidth anekised cost.Finally,
Nvidia markets the Quadro line for professional graphics applications.

To date, there have been roughly two generations of CUDA-enabledsGHUe flagship
consumer cards of the previous and current generation are the c@eB@00 GTX and the GTX

1The Tesla series also lacks video output.

Blasting through lattice calculations using CUDA Claudio Rebbi

Card Cores| Bandwidth (GB/s)| Gflops | Device Memory
GeForce 8800 GTX 128 | 86.4 518 768 MB

Tesla C870 128 | 76.8 518 1.5GB
GeForce GTX 280 | 240 | 141.7 933 1GB

Tesla C1060 240 | 102 933 4GB

Table 1: Specifications of representative Nvidia cards. The Test¥81not listed) is a 1U unit, containing
the equivalent of four Tesla C1060 cards.

Device Memory

! ! !

Multiprocessor 1 || |Multiprocessor 2 Multiprocessor n
Core | | Core Core | | Core Core | | Core
1 2 1 2 1 2
Core Core Core
p p p
Registers and Registers and Registers and
Shared Memory || | Shared Memory Shared Memory

Figure 1. Architecture of a modern Nvidia graphics card. In Nvidiatsmenclature, cores are callgtdeam
processors (or scalar processors), and in current GPUs each multiprocessor has eight suascor

280, paralleled in the HPC line by the Tesla C870 and C1060 (variants are\a#able in a
single rack-mountable unit containing multiple GPUs). See Table 1 for detgitmifigations. In
Sectior{J7 below, we benchmark our code on both the Tesla C870 andd@eFoK 280. The Tesla
C1060 was not available for benchmarking at the time of the conference.

A modern Nvidia GPU contains many multiprocessors, each composed oékevees, as
illustrated in Fig[]L. For example, the GPU in the Tesla C1060 contains 30 muégsors and
a total of 240 cores. Within a multiprocessor, cores are allocated lodateegand have access
to a fast shared memory. In addition, each multiprocessor provides tworgadibnly caches: a
constant cache, and a texture cache to speed up global device Peadary storage on the card
is provided bydevice memory, which is shared among all multiprocessors and has a relatively high
latency. However, this latency can often be hidden by having a large nuohllereads ready
to execute. A very important consideration is that the highest bandwidth dievice memory is
achieved when accesses are coalesced; this occurs when grdpthfads access a contiguous,
properly aligned memory regioh.

2This requirement has been relaxed somewhat in the more recematien®f cards.

Blasting through lattice calculations using CUDA Claudio Rebbi

3. The CUDA programming model

The CUDA platform provides direct access to the GPU through a C-likgraroming lan-
guage with minimal extensions. The CUDA platform includes a compiler thatttatige GPU, as
well as a hardware driver and a runtime library. Higher level librariesagso provided, including
optimized BLAS and FFT implementations.

A CUDA application works by spawning a very large number of threadmasy as tens of
thousands at once, which execute in parallel. For example, in a LGT appticane might assign
one thread to each lattice site. The user specifies the number, organizatibshared memory
usage of the threads when a CUDA kernel is invoked. As an examplsidesrthe CUDA code

dsl ashKernel <<<gridbDim blockD m sharedBytes>>> (args);

which invokesds| ashKer nel (ar gs) for execution by many individual threads on the GPU.
Threads are grouped inthread blocks, and the entire collection of thread blocks is called a
grid. The code above tells the GPU to launch a kernel ugingdDi mblocks, each containing
bl ockDi mthreads. The compiler is instructed to allocatear edByt es bytes ofshared mem-

ory to each block. This shared memory allows for rapid communication betweedthvéthin a
thread block. CUDA provides primitives to allow synchronization betweegeitis within a thread
block. However, no synchronization is possible between differenathbbocks (within a single
kernel invocation).

The GPU will dynamically schedule the thread blocks for execution. Inraaléide high
latency operations, it is desirable to have a higlhitiprocessor occupancy: each multiprocessor
should have many threads simultaneously loaded and waiting for executlmn chiallenges to
achieving high multiprocessor occupancy will be discussed in SgdtionesGPU supports condi-
tional execution, but it is highly desirable that groups of 32 threatts ¢ad war p) follow the same
execution path. Otherwise, both execution paths are serialized andexkégithe entire warp.

4. Wilson inverter: Main features

We implemented a CUDA kernel, Dslash, which calculates the Wilson-Diracatipere-
stricted to spinor variables at the even or odd parity sites. We have also imtsivean even-odd
preconditioned conjugate gradient (CG) solver.

The action of Dslash and Dsldshn a spinor field is the most compute-intensive part of the
CG inverter. Our CUDA implementation spawns one thread for each site in tea (@ odd)
sub-lattice. Performance is limited by memory bandwidth, as is common in LGT ajimtisa
Nonetheless, the GPU achieves a high sustained performance due ttativelyelarge memory
bandwidth. We have structured the calculation in a manner which helpserédecamount of
transferred data (e.g., we mostly use 32-bit precision, we gauge fix to riigotal gauge, we
reconstruct the gauge links from only two columns of data, etc.) and maxirthizesverlap of
computation and communication.

The CG algorithm is decomposed into several operations, each of wmehasua separate
CUDA kernel. Besides the Dslash operator, we also require a dot girodaration and a variety
of BLAS-like operations. The dot product involves a global sum, whigheidormed by the GPU

Blasting through lattice calculations using CUDA Claudio Rebbi

in double precision using parallel reduction. In the Wilson-Dirac solvex,léingest portion of
compute time is spent in applying the Dslash and DSlaglerators. We find that the whole solver
runs at well over 80 percent of the speed of just its Dslash componen&ldd’ emphasize that the
operation of the Wilson-Dirac solver involves negligible data transfer attlee device and host
computer.

5. Datalayout

We consider a lattice of 3 1 dimensions, splitting the gauge and spinor fields into even and
odd sub-lattices. With three colors and four spin components, spinor feddére 24 floats per
lattice site to store. Gauge fields require 18 floats per link. Following [1],wel@y a specialized
data layout. We do so because, as we have mentioned, maximum bandwidthinedlwhen
16 consecutive threads falf warp) simultaneously read 16 primitive elements which are packed
contiguously in device memory. The available primitive elements include strgovdre 2, or 4
packed floats. Our testing indicates that, on current hardware, thbdrebwidth is achieved using
device reads through the texture cache, and Udiragat 4 primitives. Spinor objects are composed
of 24 floats, so we use 6 arraysfdfoat 4s to store the entire spinor field. In this way, consecutive
threads can simultaneously access (nearly) consecutive elementsdvara chemory. The gauge
links are stored in 12 floats (before SU(3) reconstruction), requiriagad/s off | oat 4s.

Because the lattice sites are split by parity, and because of boundecisethe half warp of
16 consecutive threads may acces®at 4 objects which are nearly, but not exactly, contiguous
in memory. The texture cache mitigates the performance penalty of imperfectrgnantesses.

6. Local storage constraints

Unlike CPUs, the GPU does not provide a large memory cache. Instea@Pteprovides
a relatively small amount of fashared memory, which is manually managed and shared between
threads. Shared memory is orders of magnitude faster than device memacgess to the latter
must be minimized. For the Dslash operation, we have found that shared ynalope is not
satisfactory for local data storage, and we therefore employ registedata storage as well.

For hiding high latency operations it is important to have a high multiprocessmpancy:
manyactive threads should be simultaneously loaded and ready to execute. Our tests indicate that
192 active threads per multiprocessor is desirable and that performagidly degrades with fewer
active threads. The multiprocessor occupancy is determined by the reajistshared memory
requirements of the CUDA kernel.

At the hardware level, a single GPU contains many multiprocessors (tyriénor 30). Each
multiprocessor has a fixed quantity of local storage (registers anddsmamory) which is divided
among many active threads. Nvidia’s previous generation GPUs proMi@i2 Begisters and 16 KB
of shared memory per multiprocessor, while in the more recent generationmfiger of registers
has been increased to 16,384.

What are the local storage requirements for each thread in the Dslasttiop@ Each thread
must accumulate to a single output spinor, which is composed of 24 floatshantti geside in
local storage. In constructing the output spinor, the thread loops tvezighboring sites. In each

Blasting through lattice calculations using CUDA Claudio Rebbi

100 ‘ ‘ ‘ ‘ 90

< <

L —¢ — a

©-® 16°(GF, C870) 0@ 16%GF, C870)

B 32%GF, C870) 1 r ¢ 327GF, C870)]
16°(C870) : L 16%C870) i

A4 37°(C870) B A—A 32°%C870)

<4< 16GF, GTX 280) <4< 16%GF, GTX 280) |
3
32°(GF, GTX 280; 323(GF, GTX 280,

< <
< =

|

y

[ec]
o
T
~
o

2}
o
I

~
o
T
|

Gflops (Effective)

i
»
2
(el
8
N
|

Gflops (Effective)

L l/./-i
soL oLa . e

I | I | 1 | I I | I | 1 | 1
50O 32 64 96 12¢ 40O 32 64 96 12¢

Temporal Extent Temporal Extent

Figure 2: Performance of the preconditioned WilsoRigure 3: Performance of the conjugate gradient in-
operator(1 — k?DeoDoe). verter.

direction, a full spinor and gauge link must be read. The neighboringgs@rnmmediately pro-
jected into alf spinor and requires only 12 floats of local storage. The SU(3) matrix reptiagen
the gauge link requires an additional 18 floats. Thus, at a minimum, 54 fleatequired per
thread. If these are to be stored entirely in the 16 KB of shared memoryathmanst 64 threads
would be active on one multiprocessohis number is much smaller than the target, 192, and
would negatively impact performance. Our trick is to use registers fatiaddl data storage. The
GPU has at least 8,192 registers per multiprocessor, providing 32 KR alf$torage. Using both
shared memory and registers it is possible to obtain 192 active threads li@racassor for the
Dslash kernel.

What are registers exactly? Registers serve the same function on a GiRbyado on a
CPU. Namely, they appear as explicitly labeled operands in machine codectisis generated
by the compiler. Every active thread on a multiprocessor is allocated aisaffrtumber of private
registers to execute the CUDA kernel. Unlike shared memory, registenstcha shared between
threads. Another limitation is that data stored in registers cannot be ordantpean array and
dynamically indexed. For example, we store the SU(3) matrix elements in registeleclaring

float g1, g2, 93, ..., 018;

We cannot use loops to express matrix operations on these elements. Watfaty Bslash opera-
tion by hand, and without using loops, would be tedious and error-pferehis reason, we found
it expedient to automatically generate the lengthy Dslash CUDA code. ThelDstale generator
was written in the Scala programming language.

7. Performance

In Fig. 2, we present performance results for the even-odd prétmmet Wilson-Dirac opera-
tor on arange of different volumes. We find that the performance is oaékly volume-dependent:
for all but the smallest volumes it sustains above 60 GFlops on the C870@umtis00 GFlops on

3The number of active threads must be a multiple of 32, the warp size. léptewf 64 is recommended.

Blasting through lattice calculations using CUDA Claudio Rebbi

the GTX 280. Results for the full CG inverter are shown in [fjg. 3. For vokiofeeasonable size,
the inverter sustains over 50 GFlops and 80 GFlops on the C870 and GX, Xe&pectively. We
have also implemented a BiCGstab inverter that achieves similar performance.

The (GF) label on the plots signify that the gauge-fixing trick was useis. ifitolves fixing the
temporal gauge links to the identity (on all but one time-slice) in order to save ngdrandwidth,
and improves performance by about 10 percent. We also save bandwiddading only two
columns of each gauge matrix and reconstructing the third on the fly. Insdkcahe reported
performance numbers are “effective gigaflops” that may be compaitbdimplementations on
traditional architectures. In particular, the nominal number of operatientagtice site does not
include the extra work done in the SU(3) reconstruction, nor the savesrcmted with having
trivial links in the time direction.

We note that performance of the GPU code is more than an order of maggieater than
typical SSE-optimized implementations (which generally achieve less than 5sGéiopVilson
matrix-vector on a 3.0 GHz quad-core Xeon processor). In additiorsdhkng of performance
with volume is relatively constant, as compared to CPU implementations which drdfeatically
as the local volume falls out of cache. At 80 Gflops sustained CG perfaerand $450 per board,
the GTX 280 card represents a price-performance ratio of $5.60/Gfepkiding, of course, the
cost of the host computer).

Acknowledgments

This work was supported in part by US DOE grants DE-FG02-91ER8@sid DE-FCO02-
06ER41440 and NSF grants DGE-0221680, PHY-0427646, ando@€3300.

References

[1] G.I. Egri, Z. Fodor, C. Hoelbling, S. D. Katz, D. NogradidK. K. Szabo, “Lattice QCD as a video
game,” Comput. Phys. Commutiz7, 631 (2007) [arXiv:hep-lat/0611022].

[2] K. Ibrahim, F. Bodin and O. Péne, “Fine-grained paratkgion of lattice QCD kernel routine on
GPUs,” Journal of Parallel and Distributed Computt&y 1350 (2008).

[3] NVIDIA Corporation, CUDA Programming Guide (2008),
http://www.nvidia.com/object/cuda_develop.html

[4] Advanced Micro Devices, Inc., AMD Stream Computing U&aride (2008),
http://ati.amd.com/technology/streamcomputing/reses.html

[5] F. Bellettiet al., “QCD on the Cell Broadband Engine,” P&&T 2007, 039 (2007) [arXiv:0710.2442
[hep-lat]].

[6] J. Spray, J. Hill and A. Trew, “Performance of a Latticea@tum Chromodynamics Kernel on the
Cell Processor,” Comput. Phys. Commuii9, 642 (2008) [arXiv:0804.3654 [hep-lat]].

[7] H. Baieret al., “Status of the QPACE Project,” arXiv:0810.1559 [hep-lat]

[8] L. Seiler et al., “Larrabee: a many-core x86 architeetior visual computing,” ACM SIGGRAPH
2008, 1-15 (2008).

[9] A. Munshi, “OpenCL: Parallel computing on the GPU and CRiesentation at SIGGRAPH 2008,
http://s08.idav.ucdavis.edu/munshi-opencl.pdf

