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We present a new (and general) algorithm for deriving lattice Feynman rules which is capable
of handling actions as complex as the Highly Improved Staggered Quark (HISQ) action. This
enables us to perform a perturbative calculation of the influence of dynamical HISQ fermions
on the perturbative improvement of the gluonic action in the same way as we have previously
done for asqtad fermions. We find the fermionic contributions to the radiative corrections in the
Lüscher-Weisz gauge action to be somewhat larger for HISQ fermions than for asqtad.
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1. Introduction

Continuing rapid advances in parallel computing, along with theoretical progress in the formu-
lation of lattice field theories with fermions, have led to lattice QCD simulations with dynamical
light quarks becoming the norm rather than the exception.

The Fermilab Lattice, MILC and HPQCD collaborations have an ambitious program which
to date has made several high-precision predictions from unquenched lattice QCD simulations [1].
This body of work is based on the Symanzik-improved staggered-quark formalism, specifically the
use of the asqtad [2] action. More recently, the Highly Improved Staggered Quark (HISQ) action
has been used to further suppress taste-changing interactions and to allow the use of heavier quarks
at the same lattice spacing by removing tree-level O((ma)4) artifacts from the quark action [4]. In
order to consistently use the HISQ action for the sea quarks as well [5], the calculation of HISQ
quark loops on the Symanzik-improvement of the gluon action is also needed. Having previously
carried out that calculation for the asqtad action [6], we update our calculation here to apply to the
case of dynamical HISQ fermions.

2. Perturbation Theory for the HISQ action

The HISQ action is defined by an iterated smearing procedure with reunitarisation:

UHISQ = (Fasq′ ◦PU(3) ◦FFat7)[U ] (2.1)

where U = exp(gA) is the unsmeared gauge field, PU(3) denotes the polar projection onto U(3)
(as used in simulations, and not SU(3)), and the Fat7 and modified asq smearings are defined in
[4]. Straightforward application of the methods from [7] to this action is unfeasible, since the
memory requirements for expanding the action directly into monomials quickly become excessive.
We therefore take advantage of the two-level structure inherent in the definition of the action and
split the derivation and application of the Feynman rules into two steps.

In the first step, the Feynman rules for the outer layer (the modified asqtad action) are derived
in the same way as previously. We use our HiPPy python code [7] to expand the asq’ action in
terms of the Fat7R smeared link

UFat7R
µ (x) = (PU(3) ◦FFat7)[Uµ ] = eBµ (x+ 1

2 µ̂) (2.2)

with a Lie-algebra–valued field Bµ , giving the usual monomials

Vr =
gr

r! ∑
i

f asq’
r;i ψ̄(xr;i)Bµ1(vr;i,1) · · ·Bµr(vr;i,r)Γr;iψ(yr;i) (2.3)

To derive the full HISQ Feynman rules, we also need to know the expansion of Bµ in terms of the
original gauge potential Aµ . To obtain this, we write the Fat7-smeared link as1 FFat7[U ] = M = HV ,
where H† = H and V ∈ U(3). We can now use our HiPPy expansion routines [7] to obtain an
expansion

M = c[1+aµ ∗Aµ +aµν ∗ (Aµ ∗Aν)+ . . .] (2.4)

1In the following, we will suppress Lorentz and lattice site indices.
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where, e.g. aµν ∗(Aµ ∗Aν) = ∑x,y aµν(x,y)Aµ(x+ 1
2 µ̂)Aν(y+ 1

2 ν̂). Then unitarity of V implies that
R≡MM† = H2 and hence V = R−1/2M using the expansion

R−1/2 = (1+(R−1))−1/2 = 1− 1
2
(R−1)+

3
8
(R−1)2 + . . . (2.5)

Rearranging the result as V = exp(B), i.e.

B = log(V ) = (V −1)− 1
2
(V −1)2 + . . . (2.6)

finally yields the desired expansion of B.
Given this, we can now numerically reconstruct the HISQ Feynman rules for any given set of

momenta from eqn. (2.3) by a convolution of the asq’ Feynman rules of eqn. (2.3) with the expan-
sion of Bµ in terms of Aµ , summing up all the different ways in which the gluons Aµ going into the
vertex could have come from the fields Bµ appearing in eqn. (2.3). Compared to a simple-minded
expansion of the HISQ action, this not only save enough memory to enable the derivation to be per-
formed in practice, but also leads to a considerable speed-up in many cases. In particular, we can
take advantage of the (anti-)symmetries that the expansion of Bµ in terms of Aµ possesses, allowing
us to reduce the number of contributions we need to take into account when evaluating Feynman
diagrams. In the calculation of the three-gluon vertex for the “octopus” diagram (a fermion tadpole
with three gluon legs) entering the three-point function, we are able to omit the contribution from
the expansion of a single Bµ into three gluons on symmetry grounds.

3. On-shell improvement

The Lüscher-Weisz action is given by [8]

S = ∑
x

{
(1−8(c1 + c2)) ∑

µ 6=ν

〈
1−Pµν

〉
+2c1 ∑

µ 6=ν

〈
1−Rµν

〉
+

4
3

c2 ∑
µ 6=ν 6=ρ

〈
1−Tµνρ

〉}
, (3.1)

where P, R and T are the plaquette, rectangle and “twisted” parallelogram loops, respectively. The
coefficients c1 and c2 need to be determined in order to eliminate the O(a2) lattice artifacts.

Given two independent quantities Q1 and Q2 with expansions

Qi = Q̄i +wi(µa)2 +di jc j(µa)2 +O
(
(µa)4) , (3.2)

in powers of (µa), where µ is some energy scale, we obtain the O(a2) matching condition

di jc j =−wi . (3.3)

Since this equation is linear, both sides can be decomposed into a gluonic and a fermionic part; the
known gluonic part [9, 10] being independent of the fermion action, we will here focus only on the
fermionic part.

At tree-level, there are no fermion loops to consider, and hence the tree-level coefficients re-
main unchanged compared to the quenched case [9]. To compute to one-loop fermionic corrections
to the gluon action, we will follow the same procedure as in the case of the asqtad action [6].
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4. Twisted boundary conditions

We work on a four-dimensional Euclidean lattice of length La in the x and y directions and
lengths Lza, Lta in the z and t directions, respectively, where a is the lattice spacing and L,Lz,Lt

are even integers. In the following, we will employ twisted boundary conditions in much the same
way as in [9, 10]. The twisted boundary conditions we use for gluons and quarks are applied to the
(x,y) directions and are given by (ν = x,y)

Uµ(x+Lν̂) = ΩνUµ(x)Ω−1
ν , Ψ(x+Lν̂) = ΩνΨ(x)Ω−1

ν , (4.1)

where the quark field Ψsc(x) becomes a matrix in smell-colour space [11] by the introduction of a
new SU(N) quantum number “smell” in addition to the quark colour. We apply periodic boundary
conditions in the (z, t) directions.

These boundary conditions lead to a change in the Fourier expansion of the fields: in the
twisted (x,y) directions the momentum sums are now over

pν = mnν , − NL
2

< nν ≤
NL
2

, ν = (x,y) , (4.2)

where m = 2π

NL . The modes with (nx = ny = 0 mod N) are omitted from the sum in the case of the
gluons. The momentum sums for quark loops need to be divided by N to remove the redundant
smell factor.

The twisted theory can be viewed as a two-dimensional Kaluza-Klein theory in the (z, t) plane.
Denoting n = (nx,ny), the stable particles in the (z, t) continuum limit of this effective theory are
called the A mesons (n = (1,0) or n = (0,1)) with mass m and the B mesons (n = (1,1)) with mass√

2m [10].

5. Small-mass expansions

Although we ultimately wish to extrapolate to the chiral limit, we cannot set mqa = 0 straight
away, since the correct chiral limit is mqa→ 0, ma→ 0, mq/m > C, where C is a constant de-
termined by the requirement that a Wick rotation can be performed without encountering a pinch
singularity.

Therefore, we first expand some observable quantity Q in powers of ma at fixed mqa:

Q(ma,mqa) = a(Q)
0 (mqa)+a(Q)

2 (mqa)(ma)2 +O
(
(ma)4,(ma)4 log(ma)

)
(5.1)

where the coefficients in the expansion are all functions of mqa. There is no term at O
(
(ma)2 log(ma)

)
since the gluon action is improved at tree-level to O(a2) [10]. Then, we expand the coefficients
a(Q)

0 (mqa) in power of mqa.
For a(Q)

0 (mqa) we have

a(Q)
0 (mqa) = b(Q)

0,0 log(mqa)+a(Q)
0,0 . (5.2)

Since we expect a well-defined continuum limit, a(Q)
0 (mqa) cannot contain any negative powers of

mqa, but may contain logarithms; b(Q)
0,0 is the anomalous dimension associated with Q, and can be

determined by a continuum calculation.
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Figure 1: A plot of the fermionic contributions to the one-loop A meson self-energy m(1)
A /m against (ma)2.

The vanishing of m(1)
A /m in the infinite-volume limit can be seen clearly.

For a(Q)
2 (mqa) we find

a(Q)
2 (mqa) =

a(Q)
2,−2

(mqa)2 +a(Q)
2,0 +

(
a(Q)

2,2 +b(Q)
2,2 log(mqa)

)
(mqa)2 +O

(
(mqa)4) .

After multiplication by (ma)2, the (mqa)−2 contribution gives rise to a continuum contribution to Q,
and a(Q)

2,−2 is calculable in continuum perturbation theory. There can be no term in (mqa)−2 log(mqa)
since this would be a volume-dependent further contribution to the anomalous dimension of Q, and
there can be no term in log(mqa) since the action is tree-level O(a2) improved.

In the chiral limit mq→ 0, the term wi that appears on the right-hand side of Eqn. (3.3) is a(Q)
2,0 .

6. Twisted spectral quantities

The simplest spectral quantity that can be chosen within the framework of the twisted boundary
conditions outlined above is the (renormalised) mass of the A meson. The one-loop correction the
the A meson mass is given by

m(1)
A =−Z0(k)

π
(1)
11 (k)

2m(0)
A

∣∣∣∣∣
k=(im(0)

A ,0,m,0)

(6.1)

where Z0(k) = 1+O
(
(ma)4

)
is the residue of the pole of the tree-level gluon propagator at spatial

momentum k, and m(0)
A is defined so that the momentum k is on-shell.

From gauge invariance we find a(mA,1)
2,−2 = 0 and a(mA,1)

0 (mqa) = 0. The O
(
αs(ma)2

)
contribu-

tion from improvement of the action is given by [10]

∆imp
m(1)

A
m

=−(c(1)
1 − c(1)

2 )(ma)2 +O
(
(ma)4) . (6.2)
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Figure 2: Plots of a(λ ,1)
0 against mqa (left) and of a(λ ,1)

2 against mqa (right) with the fits shown for compari-
son.

The next simplest independent spectral quantity is the scattering amplitude for A mesons at B
meson threshold, which can be described by an effective AAB meson coupling constant λ [12]:

λ = g0
√

Z(k)Z(p)Z(q)e jΓ
1,2, j(k, p,q) (6.3)

with a twist factor of i
N Tr([Γk,Γp]Γq) factored out from from both sides, and the momenta and

polarisations of the incoming particles are (where r > 0 is defined such that E(q) = 0)

k = (iE(k),k) p = (−iE(p),p) q = (0,q) e = (0,1,−1,0)
k = (0,m, ir) p = (m,0, ir) q = (−m,−m,−2ir)

(6.4)

We expand Eqn. (6.3) perturbatively to one-loop order and find (up to O((ma)4) corrections)

λ (1)

m
=
(

1− 1
24

m2
)

Γ(1)

m
− 4

k0

d
dk0

π
(1)
11 (k)

∣∣∣
k0=iE(k)

−
(

1− 1
12

m2
)

d2

dq2
0

(
eie j

π
(1)
i j (q)

)∣∣∣
q0=0

(6.5)

The derivatives of Feynman diagrams are computed using automatic differentiation [13]. Contin-
uum calculations of the anomalous dimension and infrared divergence give

b(λ ,1)
0,0 = −

N f

3π2 g2 , a(λ ,1)
2,−2 = −

N f

120π2 g2 . (6.6)

The improvement contribution to λ is [10]

∆imp
λ 1

m
= 4(9c(1)

1 −7c(1)
2 )(ma)2 +O

(
(ma)4) . (6.7)

7. Results

To extract the improvement coefficients from our diagrammatic calculations, we compute the
diagrams for a number of different values of both L and mq with N f = 1, N = 3. At each value
of mq, we then perform a fit in ma of the form given in Eqn. (5.1) to extract the coefficients
a(Q,1)

n (mqa), n = 0,2. Our fits confirm that a(mA,1)
0 (mqa) = 0.
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Performing a fit of the form (5.2) and (5.3), respectively, on these coefficients, we are able
to extract the analytically-known coefficients with high accuracy, along with the required (ma)2

contributions.
Solving equation (3.3) for c(1)

i given the fitted values for aQi
2,0, our results can be summarised

as

c(1)
1 = −0.025218(4)+0.0110(3)N f (7.1)

c(1)
2 = −0.004418(4)+0.0016(3)N f (7.2)

where the quenched (N f = 0) results are taken from [10]. The shift from the unquenched values
is surprisingly large, even compared to the coefficients for asqtad fermions [6]. At first sight, this
may seem like a surprise, since HISQ is supposed to be the more highly-improved action. However,
HISQ is designed to suppress taste-changing interactions (low momentum quark/high momentum
gluon couplings), but these coefficients come from high momentum quark/low momentum gluon
couplings, for whose suppression the HISQ action is not tuned.
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