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We propose to stabilise HMC simulations of lattice QCD with very light Wilson quarks by split-

ting the quark determinant into two factors and by treating the factor that includes the contribution

of the low modes of the Dirac operator as a reweighting factor. In general, determinant reweight-

ing becomes inefficient on large lattices, because the statistical fluctuations of quark determinants

increase exponentially with the lattice volume. Random matrix theory and some numerical studies

now suggest that the low-mode contribution to the determinant behaves differently, which allows

factorisations to be devised that preserve the efficiency ofthe simulation on large lattices.
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1. Introduction

Simulations of lattice QCD with very light Wilson quarks are potentially affected byalgorith-
mic instabilities, sampling inefficiencies and ergodicity violations. The issue was studied in some
detail in ref. [1] and it was concluded that simulations based on the Hybrid Monte Carlo (HMC)
algorithm [2] can be expected to be stable in a range of the lattice parameters and the light-quark
masses which includes the large-volume regime of QCD at lattice spacingsa≤ 0.1 fm.

The algorithm proposed here avoids the instabilities from the beginning by separating the low
modes of the Dirac operator from the rest of the modes and by including onlythe latter in the HMC
algorithm. The low modes are then taken into account by reweighting the generated representative
ensemble of fields by the appropriate factor. Similar mode separations were recently considered by
Jansen et al. [3] and by Hasenfratz et al. [4], partly with the same motivations and partly for other
reasons (see refs. [5 – 7] for related earlier work).

Low-mode reweighting tends to reduce the statistical fluctuations of observables that are sen-
sitive to the low modes [7] but will only work out if the reweighting factor itself does not fluctuate
too much. From this point of view, reweighting by ratios of quark determinants(such as the ones
considered below) does not seem to be particularly promising, because quark determinants scale
exponentially with the volume of the lattice. Our aim in this report is to show that the situation is ac-
tually more favourable than suspected, the main reason being that the low eigenvalues of the Dirac
operator (except perhaps for the few lowest ones) fluctuate by no more than a distance inversely
proportional to the lattice volume about their mean values.

2. Determinant factorisation

We consider lattice QCD with a doublet of light Wilson quarks and any number of heavier
quarks. The (massive) light-quark Wilson–Dirac operator is denoted byD and the associated bare
current-quark mass bym. On average the spectral gap of the hermitian Dirac operatorγ5D around
the origin is then approximately equal toZAm, whereZA is the renormalization constant of the
isovector axial current [1].

Determinant reweighting starts from an exact factorisation

det(D†D) = Wdet(D̃†D̃) (2.1)

of the light-quark determinant, whereW is the reweighting factor and̃D a modified Wilson–Dirac
operator whose determinant is included in the HMC algorithm. In the following, two choicesD̃l ,
l = 1,2, of the modified operator will be considered for which the associated reweighting factors
are of the form

Wl = det{wl (D
†D)} (2.2)

(see Table 1). Note that the (complex) spectrum ofγ5D̃l is in both cases rigorously separated from
the origin by a distance of orderµ, for all quark massesm, very much as in twisted-mass QCD with
twisted massµ [8]. The modified quark determinant det(D̃1

†D̃1) in fact coincides with the quark
determinant in twisted-mass QCD.

The inclusion of the modified quark determinant in the HMC algorithm is not expected to
give rise to instabilities since the modified Wilson–Dirac operator is safe from having near-zero
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l D̃l wl (ν2) wl (ν2)
∣

∣

ν2≫µ2

1 D+ iµγ5
ν2

ν2 + µ2 1− µ2

ν2 +O(ν−4)

2 (D+ iµγ5)
γ5D− iµ

γ5D− i
√

2µ
ν2(ν2 +2µ2)

(ν2 + µ2)2 1− µ4

ν4 +O(ν−6)

Table 1: Modified Dirac operators and associated reweighting factors considered in this report. The mass
parameterµ > 0 can in principle be set to any value, but good reweighting efficiencies are only achieved if
µ is not much larger thanZAm.

modes. Moreover, we do not foresee any difficulties in applying acceleration techniques such as
the Schwarz preconditioning [9] and local deflation [10] to the modified algorithm. In this report,
however, the focus will be on the reweighting efficiency and its dependence on the lattice size.

3. Statistical fluctuations ofWWWlll

We now need to distinguish the true QCD expectation value〈O〉 of any observableO from its
expectation value〈O〉m in the theory with the modified quark determinant. Only the latter can be
estimated directly using the representative ensembles of fields generated bythe HMC algorithm,
while the first is obtained through

〈O〉 =
〈OWl 〉m

〈Wl 〉m
. (3.1)

Evidently, for the reweighting (3.1) to work out in practice, the statistical fluctuations ofWl must
be fairly small.

Whether this condition can be met on large lattices is unclear since

Wl = e−Xl , Xl =
∫ µ2

0
ds1 . . .dsl Tr

{

(D†D+s1 + . . .+sl )
−l

}

, (3.2)

is the exponential of an extensive quantityXl . In particular, using the moment-cumulant transfor-
mation one can show that

〈W2
l 〉m

〈Wl 〉2
m

= 〈Wl 〉〈Wl
−1〉 = exp

{

∞

∑
n=1

2
(2n)!

〈X2n
l 〉con

}

, (3.3)

where〈X2n
l 〉con denotes the connected part of〈X2n

l 〉. The fluctuations of the reweighting factor thus
grow exponentially with the lattice volumeV and may therefore rapidly become too large whenV
is increased. However, as we shall see in the following sections, there are important mechanisms
that suppress the fluctuations to the extent that determinant reweighting becomes a viable method
in a useful range of parameters.

4. Suppression of the high modes

Determinant reweighting is intended for use at quark masses close to or below the range of sta-
bility of the HMC algorithm. The values of the renormalized light-quark mass where reweighting
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will be applied are therefore expected to be smaller than 20 MeV or so1. At these quark masses, the
low end of the spectrum of(D†D)1/2 starts at aboutZAmand has an approximately constant density
from there up to eigenvalues̄νn,R of at least 100 MeV. In the following, the associated eigenmodes
of D†D will be referred to as the “low modes” of the Dirac operator and all other eigenmodes as the
“high modes”. As explained in the next section, the mass parameterµ will, in the cases of interest,
be less than, say, 2ZAmand therefore always well below the high eigenvalues of the Dirac operator.

The reweighting factorsWl have been chosen so that the eigenvaluesν2 of D†D larger thanµ2

make a monotonically decreasing contribution of orderµ2l/ν2l to Xl (see Table 1). Power count-
ing then shows that the expectation values〈X2n

l 〉con are ultraviolet convergent except for〈X2
1 〉con

which diverges logarithmically. The high modes of the Dirac operator thus contribute a term pro-
portional toµ4lV to the fluctuations ofWl , with a proportionality constant that diverges at most
logarithmically in the continuum limit.

On current lattices the productµ4
RV is usually much smaller than 1. For lattices of size 2L4 with

L≤ 4 fm, for example, and ifµR ≤ 20 MeV, one obtainsµ4
RV ≤ 0.054. The high-mode contribution

to the statistical fluctuations of the reweighting factorsWl thus tends to be strongly suppressed,
particularly so in the case ofW2, where there is a second suppression factor proportional toµ4

R.

5. Fluctuations of the low eigenvalues

It is still not excluded, however, that the reweighting factorsWl receive wildly fluctuating con-
tributions from the low modes of the Dirac operator. There is no obvious suppression mechanism
in this case, and since the number of low modes grows proportionally toV, it seems likely that
determinant reweighting will, in practice, be limited to small lattices.

In order to get some insight into the problem, we worked out the leading term〈X2
l 〉con of

the cumulant expansion (3.3) in the standard two-flavour chiral random matrix theory [11]. In
this theory,〈X2

l 〉con can be expressed through the spectral density of the Dirac operator and the
spectral 2-point correlation function, both of which are known analytically [11, 12]. An integration
over the spectral parameters is then still required, but since the integrands are non-singular, it is
straightforward to evaluate the integrals numerically.

In random matrix theory,〈X2
l 〉con is a well-defined function of the dimensionless combinations

mΣV andµΣV, whereΣ denotes the quark condensate in the chiral limit. To a very good approxi-
mation, we however found that〈X2

l 〉con only depends on the ratio of these parameters (see Figure 1).
Random matrix theory thus suggests that the contribution of the low modes to the fluctuations of
the reweighting factorsdoes not change significantly with the volume V. Moreover, as can be seen
from Figure 1, the contribution is actually quite small up to values ofµ/m equal to 2 or so (note
thatZA = 1 in random matrix theory andµ/m therefore corresponds toµR/mR in lattice QCD).

The outcome of our calculations in random matrix theory can be explained by noting that
random matrices have a fairly rigid spectrum, i.e. with high probability, the low eigenvalues are
practically unchanged from one random matrix to another. The rigidity of thespectrum may well

1The renormalized masses aremR = ZAm/ZP andµR = µ/ZP, whereZP denotes the renormalization constant of
the isovector pseudo-scalar density. The medianν̄n of the distribution of then’th eigenvalueνn of (D†D)1/2 is similarly
renormalized through̄νn,R = ν̄n/ZP. Values of these quantities quoted in physical units refer to theMS renormalization
scheme at 2 GeV.
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Figure 1: Values of〈X2
l 〉con computed in random matrix theory atm= 5, . . . ,30 MeV andµ = 20, . . . ,44

MeV, assumingΣ = (250 MeV)3 andV = (4.5 fm)4 (plot on the left). The plot on the right shows the widths
of the distributions of the first 32 (48) eigenvalues of(D†D)1/2 on a lattice of size 48×243 (64×323). In
both cases the lattice spacing and the renormalized sea-quark mass are approximately equal to 0.08 fm and
25 MeV respectively. The grey points labelled “48×243 scaled” are the 48×243 data scaled by the ratio
(24/32)4 of the lattice volumes.

be related to the fact that the Vandermonde determinant, which appears in thejoint distribution of
the eigenvalues, gives rise to a repulsive force between neighbouringeigenvalues. In any case, since
the fluctuations of the low eigenvalues are of order(ΣV)−1 and since there are O(V) eigenvalues,
their contribution to the fluctuations of the reweighting factorWl will obviously remain bounded at
largeV.

In lattice QCD with Wilson quarks, chiral symmetry is not exactly preserved and it is therefore
not guaranteed that the eigenvalues of the lattice Dirac operator behave inthe same way. Numerical
studies of the O(a)-improved two-flavour theory however suggest that the widths of the eigenvalue
distributions scale roughly like 1/V, as in random matrix theory, except for the widths measured
close to the threshold of the spectrum (see Figure 1)2. In the Wilson theory, the contribution of
the low modes to the fluctuations of the reweighting factor is therefore slowly increasing with the
lattice size, an effect that is likely to become smaller as one moves closer to the continuum limit.

6. Computation of the reweighting factors

An exact calculation of the reweighting factorsWl is normally not possible and actually not
required. Stochastic estimators can be used instead, or perhaps some combination of a stochastic
estimator and a (not necessarily exact) projector to the few lowest modes ofthe Dirac operator.
Here we only consider the most obvious choice, where a setηk(x), k = 1, . . . ,N, of pseudo-fermion

2The representative ensembles of gauge-field configurations used for our numerical studies were generated by the
authors of ref. [13] and were made available to us through the CLS community effort.
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Figure 2: Reweighting factorW2,24 normalized by its median atmR ≃ 25 MeV andµR/mR = 0.7,1.0,1.5
(from top to bottom), calculated for a set of independent gauge-field configurations on a 48×243 (plots on
the left) and a 64×323 lattice (plots on the right) with spacinga≃ 0.08 fm.

fields with action

Sη =
N

∑
k=1

(ηk,ηk) (6.1)

is added to the theory and the reweighting factorWl is replaced by

Wl ,N =
1
N

N

∑
k=1

exp
{(

ηk,
[

1−wl (D
†D)−1]ηk

)}

. (6.2)

The simulation then proceeds as before and the reweighting factorWl ,N is calculated according to
eq. (6.2), using, for each gauge field,N randomly chosen pseudo-fermion fields. This procedure is
correct for anyN ≥ 1, but it pays to setN to values significantly larger than 1, because the variance
of Wl ,N decreases whenN is increased (and eventually converges to the variance ofWl ).

For illustration the Monte Carlo time series ofW2,24 calculated on the lattices previously con-
sidered are plotted in Figure 2. In all these cases, little would be gained by choosing more pseudo-
fermion fields or by separating the lowest modes of the Dirac operator (such a mode separation
may, however, be required at smaller quark masses).

Figure 2 also shows that the fluctuations ofW2,24 increase with the lattice size and that they
are quite sensitive to the value ofµR/mR. In particular, by decreasing the latter, the fluctuations are
quickly reduced to acceptable levels on both lattices. The fluctuations ofW1,24 at µR/mR = 0.7 and
1.0 are, incidentally, practically the same as those ofW2,24 atµR/mR = 1.0 and 1.5, respectively. On
the lattices considered and before the performance of the HMC part of thealgorithm is determined,
it is therefore not clear whether the first or the second factorisation of the quark determinant is
preferable.
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7. Conclusions

In this report we showed that determinant reweighting is likely to work out in lattice QCD if a
factorisation of the quark determinant is chosen where the high-mode contribution to the reweight-
ing factor is sufficiently suppressed. Somewhat surprisingly to us, the statistical fluctuations of the
reweighting factor then do not grow rapidly with the volume of the lattice, a property that can be
traced back to the rigidity of the spectrum of the low eigenvalues of the Dirac operator.

We are now quite confident that simulations of the Wilson theory at very small quark masses
can be stabilised in this way, but still need to prove this by actually performing such simulations
using the proposed determinant factorisations.
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