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tation is considered. This model may be a viable model of teetmweak symmetry breaking
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Nearly conformal electroweak sector with chiral fermions Daniel Nogradi

1. Introduction

Model building of a strongly interacting electroweak sector, with or withouigglresonance,
requires the knowledge of the phase diagram of non-abelian gaugethtw varying number of
colorsN¢, number of fermion flavor$l;, and representatioR. For fixedN; andR the theory is
generically in the chiral symmetry broken phase for lWyvand the conformal phase for highy
as long as asymptotic freedom is maintained,Ngis not too high. Certain models requixg to
be just below the conformal window along the lines of the walking technicaleadigm [[L] and
the knowledge of the criticdll; separating the two phases is essential.

Mapping out the phase diagram in the spac®&lgfNs andRis an interesting problem on its
own and can be useful for model builders with different motivations sichnparticles. We are
first and foremost concerned with the Higgs mechanism though.

In this context the parametes, Ns andR are not only restricted by the phase diagram but also
by electroweak precision data and the symmetry breaking pattern ngcissgenerating masses
for theW andZ bosons. Consistency with electroweak precision data requires aSpelameter
while the simplest symmetry breaking pattern is the one which generates exastjd8tone
bosons with no (techni)pions left over after the massive gauge bosguged their masses. The
simplest model fulfilling these requirementsSt)(3) gauge group witiN; = 2 fermions in the
2-index symmetric () representation which is the topic of our study.

In a numerical simulation at finite volume, finite lattice spacing and (usually) finitekg
masses it is a non-trivial task to determine whether the theory is conformag indtitinuum,
massless quark and infinite volume limits, or chiral symmetry is broken just asih (Gection
a method is introduced that is capable of distinguishing the two phasesdratieslbehavior of
the low-lying Dirac eigenvalues. If the theory is QCD-like chiral symmetry @aneously broken
and random matrix theory (RMT) will predict the distribution of low-lying eigalues in thees-
regime [2], whereas in the conformal phase chiral symmetry is unbrakebithe spectral density
of the Dirac operator goes to zero aroune: 0. One particular advantage of RMT is that it works
for finite (but small of course) quark mass. This method of distinguishirgehwith the help of
the Dirac spectrum has been applied for dynamical staggered fermidgisvitnich complements
Schrodinger functional and finite temperature based investigations of sdygitamical staggered

models [#[B].

2. Perturbative expectations

As is well-known the 2-loop perturbativ@-function [6] can be used to estimate the critical
N; value above which the theory is conformal and below which chiral symmesyyadstaneously
broken [J]. If the first two coefficients af@ andf3,, asymptotic freedom requirgd < 0 otherwise
the theory is free in the continuum. 8§ < 0 andfB; > 0 a non-trivial zero of thg-function exists
hinting at a non-trivial IR fixed point. However if the fixed point value of ttoupling is too large
chiral symmetry is spontaneously broken before the flow in the IR carh ris@cwould-be fixed
point. It is nevertheless expected that a criti‘sia’lit value exists above which the theory is really
conformal even non-perturbatively.
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The vaIueN?rit can be estimated in the ladder approximation by the requirement that the
anomalous dimension apy reachesy = 1 [g]. Using this bound, the conformal window for
SU(2) and representationis=1/2,1 and 32 is expected to be & N; < 11, none (for integeNr)
andN; = 1 respectively, and no window fgr> 3/2. ForSU(3) and fundamental, adjoint =A2
and S representations the conformal window is expected to be N < 16, none (for integer
N¢) andN; = 3 respectively.

3. Dirac spectrum

To what extent the perturbative expectations of the previous sectigusied is an open
question in general. Non-perturbative tests of these expectations @emebrformed for various
gauge groups, flavor number and representatidr$ [#,[5] 8,]1403113Lusing various methods.

The low-lying spectrum of the Dirac operator is sensitive to the IR dynanfiiteedheory and
shows characteristically different behavior in the conformal and QC®dhases. Its measurement
is in principle straightforward in a lattice simulation hence it is a good candidatstioglish the
two phases.

3.1 Chirally broken phase, e-regime, random matrix theory

If chiral symmetry is spontaneously broken, the Banks-Casher reladiomects the spectral
densityp(A) of the Dirac operator around zero to the chiral condengate [14],

_ i i T1P(0)
2= mo\}linm v (3.1
It also implies that the low-lying eigenvalues are dense in the sense thatdtagawpacing is
inversely proportional to the volume,

TT
M= (3.2)

It has been suggested long ago that if the bare param@tensre tuned to the-regime, i.e.
such tham; < L=t < f, the low-lying Dirac spectrum follows the predictions of a random matrix
theory [I5,[Ip]. The corresponding random matrix model is only seaditithe pattern of chiral
symmetry breaking, the topological charge and the rescaled fermion masthereigenvalues are
also rescaled by the same fackf.

More precisely, random matrix theory provides analytic formulae for theaséupic spectral
density

o0 = 0 (57) = 3. P @3

and the individual eigenvalue distributiopg({) where{ = AZV. The distributionspk({) only
depend oru = m2V, N¢ and the topological charge The value o can be obtained by using
as the fitting parameter to have



Nearly conformal electroweak sector with chiral fermions Daniel Nogradi

where the left hand side is calculated in random matrix theory at a fixedebhawhile the right
hand side is measured in the simulation in the given sactowhich eigenvaluel, and which
sectorv is used is arbitrary in principle (as longlais not too large, sak = 1, 2,3) and the quality
of the whole procedure may be characterized by the (in)consistence obtiained = p/(mV)
values for various and/orv.

A more stringent test is the comparisonmgf{) between the random matrix theory predictions
and the simulation once a consisténand corresponding have been obtained from the above
fitting procedure. The agreement is only expected for the first few eddjees.

In order to see the effects of dynamical quarks the lowest eigenvatuddsbe larger than the
fermion massn. Otherwise the simulation is effectively quenched and random matrix theibry w
only agree alN; = 0.

Out of the two requirements of theeregime,m;L < 1 can be satisfied by tuning the fermion
mass to a small value at ahy However the second requiremeffitL. > 1, is largely independent
of m provided it is small enough and puts a lower bound_oAs the lower edge of the conformal
window is approached from below;; is expected to decrease and eventually will vanish as the
theory becomes conformal. Hence th& > 1 condition will be more and more difficult to satisfy
and larger and larger lattices will be needed the closer the theory is to thermahwindow. As
a result the study of nearly conformal (or walking) technicolor models g gkallenging in the
e-regime.

It should be noted that the requiremédnt. > 1 is valid up to numerical constants only. From
the behavior of the rotator and Goldstone spectrum of the chiral Lagiraitgcan be made more
precise as, L > 1/v/2mwhich is the requirement of these two spectra to separate from each other.
In fact we will see that in some cases RMT gives a good description evii ik 1 which is
probably due to the above numerical constaghy'2rmr = 0.3989.. being smaller than 1.

3.2 Conformal phase

In the conformal phase no scale is generated &rd0. The spectral density of the Dirac
operator around ~ 0 behaves as

pP(A) ~A%HY (3.5)

for massless quarks in the continuum and at infinite volume. Mer¢éhe anomalous dimension of
Py

The exact dependence pfon the conformal fixed point coupling. is in principle calcula-
ble in perturbation theory sinag. is presumably not large (otherwise chiral symmetry would be
spontaneously broken). Certainjy~ g2. Of course only a non-perturbative treatment can decide
whether there is room for a fixed point coupling which is large enough widgficantly different
from perturbation theory and small enough so that chiral symmetry is nkébr

How the (3.5) behavior is modified by finite volume and finite quark mass is amaupestion
that we hope to address in the future. Certainly, in the free- 0 case the average eigenvalue
spacing is inversely proportional to the linear sizef the box. The characteristic feature that is
expected to hold even for a finigg > 0 is that the average eigenvalue spacing for small eigenvalues
is much less dense than in the chirally broken case where it is inverselyrpomal to the 4-volume

V; see [3).



Nearly conformal electroweak sector with chiral fermions Daniel Nogradi

If the volume is too small, the chiral condensate is squeezed out of the lbothartheory
behaves perturbatively even in the case when chiral symmetry is brokam imfinite volume.
Hence great care is needed not to confuse a small volume chiral symmesdikirty and a (small
or large volume) conformal theory which is also behaving more-or-legarpatively.

4. Our model, SU(3) with N = 2in 2Srepresentation

The simplest example of a model that — according to the perturbative etipesta is just
below the conformal window, has a relatively low value so that thé&-parameter is relatively
small, and has precisely 3 Goldstone bosons:is- 3, Ny = 2 andR = 2S. This model has been
studied in [Z]L[ 12} 13] using Wilson fermions on rather small lattices and ifovasi to be already
in the conformal window although it was indicated that more complicated posshbéite also
allowed by the data.

Since exact chiral symmetry is important both for QCD-like and conformalribe we chose
to use overlap fermiong [IL7]. The simulation has to be carried out at a tispedogical charge.
There are two methods available for simulating dynamical overlap fermiongeat fopology.
One is the reflection/refraction algorithin J18] but always reflecting ortdpelogical boundary.
The other is employing a pair of extra Wilson fermions to suppress exastrzedes thereby
suppressing tunnelling between sectfr$ [19]. We used the second metticld is much faster, in
this study.

5. Preliminary results

5.1 Quenched simulations

In order to see how well actual simulations agree or disagree with the poediof random
matrix theory (RMT) we have tested the RMT predictionsMigr= 0 and overlap valence quarks in
the fundamental representation since in the quenched approximationsgimmaletry is guaranteed
to be broken. This setup is identical fo][20] but actual eigenvalue distritgiti@re not presented
there. Since valuable information can be gained from these we decidedbtthie analysis on 12
lattices a3 = 5.8458 which corresponds to a lattice sizd cf 1.49 fm. All our parameters were
the same as ifJ20]. In particular we used the Wilson gauge action and areared overlap oper-
ator. Our ensemble consists of 1500 configurations. The resulfts|did2€kpectation value ratios
(Ai)/(Aj) have been reproduced within 1-sigma precision with occasional 1.2-sigwetidns.

The distribution of thekth eigenvalue in various topological sect¢@ are shown in figurf]1
together with the RMT predictions onéehas been fitted frork = 1 andQ = 0 as described by
(B-4). Clearly, not only the expectation valugs) follow the RMT predictions but also their width.
This level of agreement with RMT was not expected sifigde < 1 for this ensemble, however as
indicated in sectiofi 3.1 a more accurate requirement oftfegime isf,L > 1/+/2m which this
ensemble does fulfill.

A similar comparison for the 2-index symmetric representation in the quengipedbamation
is ongoing. Since RMT is only sensitive to the topological chakge,u and the pattern of chiral
symmetry breaking, the same random matrix model is expected to describeptigisaation as
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Figure 1: Rescaled quenched eigenvalue distributipg® ) in the fundamental representation axd= 0
RMT predictions forlQ| =0,1,2 andk = 1,2

the one used for the fundamental. Agreement with the same RMT using adiffepresentation
than fundamental will be a non-trivial check of its universality.

5.2 Dynamical simulations

In the 2-index symmetric representation three dynamical ensembles weratgehon 6 lat-
tices using the tree-level improved Symanzik gauge actiofi a4t4.850 4.975 and 5100 and
N; = 2 flavors of massive quarks with= 0.05. The negative Wilson mass in the overlap operator
wasmy = —1.3 and 2 levels of stout smearing with smearing parameter0.15 have been ap-
plied. The topology change suppressing actior] df [19] was used with Mhas§.2 for the ghost
Wilson fermions and only the topological sect@r= 0 was sampled. Since chiral symmetry is
preserved by overlap fermions at finite lattice spadiig= 2 RMT is applicable. Fittingz from
the average first eigenvalue as[in|3.4) one obtai683)4), 0.084(4) and Q080(4) in lattice units
for the threeB values respectively.

The eigenvalue distributions look qualitatively the same for the tfrgalues and the first 3
eigenvalues are plotted in figure 2 fBr= 4.850 together with th&; = 2 RMT predictions after
rescaling both the eigenvalues and the quark mass.

Clearly, the RMT predictions are very far from the simulation results, neftieeaverages nor
the widths follow the RMT curves. This may be due to several reasons thdikedg of which is
small volume. We have not measured eithmgror f; so it is not clear if the simulation was in the
e-regime at all. Simulations on larger volumes as well as measurememggsaoid f,; are ongoing.

If the larger volume simulations agree with the above conclusion the 2-inaemstric rep-
resentation for gauge groigJ(3) andN; = 2 is already in the conformal window.

6. Conclusions and outlook

Needless to say that the results on the 2-index symmetric representatioelargénary. The
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Figure 2: Rescaled dynamical eigenvalue distributigné() in the 2-index symmetric representation and
Nf = 2 RMT predictions foQ =0andk=1,2,3

guenched fundamental representation simulations shows that the RM@tjorezlare very precise
for the first few eigenvalues once the volume is large enough. A similardusion is expected
for the quenched 2representation which will in addition test the universality of RMT. Presently,
the result of the 6dynamical Brepresentation simulation are preliminary and the deviation from
RMT is thought to be due to small volume. Larger volume simulations are ongoirtgpth the
quenched and fully dynamical cases.

Acknowledgements

D.N. would like to acknowledge helpful discussions with Christian Hoelblirmgnds Kovacs
and Kalman Szabé. This research was supported by the DOE under D@REBE-FG03-97ER40546,
DE-FG02-97ER25308, by the NSF under grant 0704171, by DF@rug@nt FO 502/1, and by
the SFB under grant SFB-TR/55.

References

[1] S. Weinberg, Phys. Rev. I8 (1976) 974.
[2] J. Gasser and H. Leutwyler, Phys. Lett188, 477 (1987).
[3] Z. Fodor, K. Holland, J. Kuti, D. Nogradi and C. Schroeder, R#§ 2008 (2008) 066
[4] T. Appelquist, G. T. Fleming and E. T. Neil, Phys. Rev. L&80 (2008) 171607 [arXiv:0712.0609 [hep-ph]].
[5] A.Deuzeman, M. P. Lombardo and E. Pallante, arXiv:0804.78@5-lat].
[6] W. E. Caswell, Phys. Rev. Lets3 (1974) 244.
[7]1 T.Banks and A. Zaks, Nucl. Phys. 6 (1982) 189.
[8] T. Appelquist, K. D. Lane and U. Mahanta, Phys. Rev. L&1t(1988) 1553.
[9] S. Catterall and F. Sannino, Phys. Revi®(2007) 034504 [arXiv:0705.1664 [hep-lat]].
[10] S. Catterall, J. Giedt, F. Sannino and J. Schneible, arXiv:0802.(hep-lat].
[11] Y. Shamir, B. Svetitsky and T. DeGrand, Phys. RewdY2008) 031502 [arXiv:0803.1707 [hep-lat]].
[12] T. DeGrand, Y. Shamir and B. Svetitsky, arXiv:0809.2953 [rath
[13] B. Svetitsky, Y. Shamir and T. DeGrand, arXiv:0809.2885 Hetp
[14] T.Banks and A. Casher, Nucl. Phys1B9 (1980) 103.
[15] E. V. Shuryak and J. J. M. Verbaarschot, Nucl. Phy868 (1993) 306 [arXiv:hep-th/9212088].
[16] J.J. M. Verbaarschot, Phys. Rev. L&®R.(1994) 2531 [arXiv:hep-th/9401059].
[17] H. Neuberger, Phys. Lett. 817 (1998) 141 [arXiv:hep-1at/9707022].
[18] Z.Fodor, S. D. Katz and K. K. Szabo, JHBR08 (2004) 003 [arXiv:hep-lat/0311010].
[19] H. Fukaya et al. Phys. Rev. P4 (2006) 094505 [arXiv:hep-lat/0607020].
[20] L. Giusti, M. Luscher, P. Weisz and H. Wittig, JHEB11 (2003) 023 [arXiv:hep-1at/0309189].



