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1. Introduction

The_# = 1 supersymmetric Yang-Mills (SYM) theory is the minimal SUSY extension of the
SU(N) Yang-Mills theory. The fermionic degrees of freedom, ¢gfhéinos are given by the super-
partners of the gauge fieldg, (gluong and are described by Majorana spindsga=1... NZ—1)
transforming according to the adjoint representation of the gauge g8&Xid.is characterized by
a rich low-energy dynamics with interesting aspects as confinement anthepous breaking of a
discrete chiral symmetry — a continuum U(1) chiral symmetry is missing at thetwudevel due
to the Adler-Bell-Jackiw anomaly. SYM can be related to QCD with a single dilear@ur (N; = 1
QCD), where the Majorana spinor is replaced by the single Dirac spirma.latter model is also
object of investigation by our collaboration [1].

This work represents a continuation of a long-standing project of theYENEBster-Roma
Collaboration (DMRC) for the simulation of SU(2) SYM, see [2] for a reviend [3] for more
recent results. Following [4] we apply the Wilson approach, which has peoved to be successful
in lattice QCD computations in spite of its known limitations. SUSY is broken by the lattice
discretisation and, in the Wilson approach, by the Wilson term. It is expectbd tecovered
in the continuum limit by properly tuning the only relevant parameter, the Hameagmass, to a
critical value corresponding to massless gluinos. Another (related)\veo@nce of the Wilson
discretisation, namely a non positive-definite fermion measure even faivpagluino masses,
turns out to have no appreciable impact in practical applications.

Past simulations of DMRC were performed on quite fine latticesy 0.08 fm, but in a small
volume,L ~ 1fm; this setup was appropriate for the study of the SUSY Ward identitiesl&d
valid in a finite volume. We now concentrate on the mass spectrum of bounsl fetatehich low-
energy effective theories predict a reorganisation of the masses iupeorsultiplets at the SUSY
point [6, 7]. Thanks to a new more efficient simulation algorithm (see bedmw)enhanced com-
puting resources we are now able to accumulate relevant statistics onlétigess. Our present
series of numerical simulations are performed of- B2 and 24 - 48 lattices with lattice spacing
a~ 0.125fm. The lattice extension~ 2 — 3fm is expected to be large enough to allow control
over finite volume effects on the bound states masses. Simulations on fineslatégalanned.

2. Latticeformulation and algorithms

2.1 Latticeformulation

We apply the tree-level Symanzik (tISym) improved gauge action for the gaarg@cluding
rectangular Wilson loops of perimeter six:

rec

Sg:B(coZ{lI\llReTrth|}+clz{1I\llReTlurec}), (2.1)
p C C

with cp = 1—8c; andcy = —1/12 in the case of tISym action.
The contribution of the gluino to the effective gauge action is given by

|
S :—élogdeQ[U], (2.2)

1We use QCD units for setting the scale. The Sommer scale parameter iofikedvaluerg = 0.5 fm.
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whereQ is the non-hermitian Dirac-Wilson fermion matrix defined by

N

QU] =830 —K S (Seyran(1+ Yu)VE(Y) + ey (1— Y )V (X)) (2.3)
u=1

V,(x) is the adjoint gauge link, a real orthogonal matrix:
VEPU](x) = 2Tr{U} () TAUL () TP} = V;2(x) = [V, 120(x)] . (2.4)

(T2 are the generators of the U group. In case of SU(2) one hag = %aa with the Pauli
matricesg?.) Observe that d€ > 0 for Majorana fermions. In our recent simulations the links
Uy in the Wilson-Dirac operator Eq. (2.3) are replaced by stout-smeared [Bhksvhich are
defined as

1 1
Uik = Uy exp{2 (Quu— QL) — 2T (Quu— Q;u)} . Qu=Ul Gy (25)
whereC, , is a sum over staples

Cuu = ; Puv <U><T+n.,va+O,qu7v +Ux—\7+ﬂ,va—\7,quTfo7v> : (2.6)
Yoat

We apply one step of smearing with smearing parameigrs= 0.15 in all lattice directions.

2.2 Updating algorithm

The factor in front of logd€R) in the Curci-Veneziano action reproduces the absolute value
of the Pfaffian for Majorana fermions. Effectively, it correspondstilavour numbeN; = %
The sign of the Pfaffian can be included in a reweighting procedurébfdew). In our numerical
simulations we use the two-step polynomial hybrid Monte Carlo (TS-PHMCYigthgo [9] which
is based on a two-step polynomial approximation [10]. The fermion detertismegpresented as

Np _ tyyINE/2 1
det(Q)™" = {det(Q'Q)}/“ ~ detP, (QTQ)P,(QTQ) 2.7)
with the condition on the polynomial3,
lim Py (X)P,(x) =x N2 xe[g,A], (2.8)

Np—o0

where the interval covers the spectrun@@f. The order of the first polynomial, is chosen as low
as possible provided that the acceptance in the accept-reject step itloRg, vafter a sequence of
PHMC trajectories prepared with, , is sufficiently high (in our cases 80-90%).

In earlier simulations of the DESY-Munster collaboration the two-step multi n¢$8MB)
algorithm [10] was used for the SYM theory. There the updating is perforoyeheatbath and
overrelaxation sweeps for the pseudofermions and Metropolis andatieatieeps for gauge field.
In case of the TS-PHMC algorithm, which is more effective in producingtsustocorrelations
among the gauge configurations, PHMC trajectories are created by aptbigiSexton-Weingarten
integration scheme with multiple time scales and, as usual, Metropolis acceptatejee end of
each trajectory. After the update sweeps/trajectories the second legisipn polynomiaP,, is
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used in a stochastigoisy correction stepvith a global accept-reject condition. The polynomial
Pr,, which is an approximation foxN/2P, |1, has to be highly precise so that the error of the
approximation is negligible compared to the overall statistical error, provttEdhe spectrum of
Q'Qis in the intervalg, A].

If some of the eigenvalues is outsi@ie A] then the approximations are not precise enough
and a reweighting procedure has to be applied by an appropriatelyrchimgeorder polynomial.
This gives a reweighting fact@[U]. In this reweighting procedure the sign of the Pfaffian of the
fermion matrix can also be included in the measurement as follows:

(signPfU]C[U])q

(2.9)

3. Simulation details

The algorithmic parameters of our TS-PHMC runs are summarised in Tablaelrufis are
performed at a single lattice spacing correspondin@ t1.6. The measured Sommer parameter
for the lighter gluino masses is about/a ~ 4. By using the QCD scale as mentioned in the
Introduction we obtaira ~ 0.125fm and a box-sizk ~ 2fm on the 18- 32 lattices and. ~ 3fm
on the 2448 lattices. Comparison of results from ensembilgs, on the 1632 lattice anc on
the 24 - 48 lattice at the same gluino mass allows the study of finite size effects.

An indication of the lightness of the gluino is given by thdjoint pionmassM;- 5, extracted
from the connected part of correlator of the pseudoscalar gluino hilisea below). The lightest
simulated adjoint pion mass (rid) corresponds tW,-; ~ 353(20) MeV in QCD units.

Compared with the previously used TSMB algorithm, TS-PHMC displays aautiely im-
proved update efficiency with shorter plaquette autocorrelation til&% This is particularly true
in the light gluino regime where the efficiency of TSMB undergoes a strepietion.

Some runs required the computation of the correction factor and the detéominé the
Pfaffian sign. We computed the correction factors for all runs in TabléH.the exception of runs
A, B, As andBs. Most signs of the Pfaffian are positive; the run with largest numbeegéative
Pfaffians is rurD where we found 15 configurations out of 5160 with negative sign. Int gases
the effect of the correction factor turned out to be negligible. This washeocase in rul where
the effect ofC[U] was important for the masses of adjoint meson bound states and the gluino-
glueballs. All quoted statistical errors of the measured quantities were estitnateel’-method
[11].

4. Bound states

The bound states masses are computed from the zero-momentum correlatitonf of the
corresponding interpolating operatgr

i) Adjoint mesons. Low-energy theories [6, 7] predict a Wess-Zumino supermultiplet con-
taining colourless composite states of two gluinos. Such states have sgjyngp@antum numbers
0~ and 0". In analogy to flavour singlet QCD we denote the forraey’ and the lattea-fo. To
project these states on the lattice we used the gluino bilinear opetateral' A wherell = 5,1
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Table 1: TS-PHMC runs algorithmic parameters with tISynBat 1.6. Runs labelled with s have been per-
formed with Stout-linksd 1 refers to the total trajectory length andyA is the noisy correction acceptance.

Run L3T K #Traj. 01 Anc% 1Pad € A

A 16321 0.1800 2500 1.05 956 7.5 .26-10° 34 50 100
B 163.32 | 0.1900 2700 1.05 96.4 3.08 104 3.8 80 300
Ca 16.32]0.2000 1973 099 829 491 .6610° 4.0 200 700
Cb 16%.32|0.2000 8874 099 883 276 .610° 4.0 200 700
D 163.32 | 0.2020 6947 0.56 885 457 .410° 4.0 800 2700
A 24348 0.1980 1480 0.9 896 4.64 .A10* 4.0 200 600
B  24%48|0.1990 1400 0.9 887 265 .0410° 4.0 270 800
C  24348|0.2000 6465 10 886 7.4 .®10° 4.0 350 1000
As 2448|0.1500 370 1.0 973 35 .B10° 22 200 600
Bs 2448 |0.1550 1730 1.0 956 8.04 .%10° 22 200 600
Cs 24°48|0.1570 2110 10 924 72 %10°% 22 400 1200

respectively. The resulting gluinoball propagator consists of condecte disconnected contribu-
tions:

2
Cr(t):\}%<Trsc[FQ;Xl]TrSC[FQ;y] —2Trs T Qi T Q] > < ZZTrSCFQXX > . (4.2)

S

disconnected connected

The connected term can be used to extract the adjoint pion kagsgthe last term in Eq. (4.1)
vanishes fol” = y). OZI arguments [4] suggeM2.,, [ my for light gluinos.

The disconnected propagators were computed by using the Stochastict&stiechnique
(SET) in the spin dilution variant to reduce the large variance. As it is the ta®CD, the
disconnected diagrams are intrinsically noisier than the connected onefoamdate the level
of noise in the total correlator. We performed tests on few configuratidgthsup toN = 40 noisy
estimators in order to study the limit at which only the gauge noise dominates thecsthtigor of
the disconnected correlator. The optimal number of estimators was finaltiifeteveen 16 and 22
estimates for all runs. In the caseaf)’ reasonable signal-to-noise ratio is obtained allowing the
extraction of the mass from the mass fit. This was not possible fa-tlaethe latter has a nonzero
overlap with the vacuum, and hence its correlator has a non-vanishingmacontribution (the
last term in Eq. (4.1)). This results in a much worse signal-to-noise rattbtreneffective mass
could only be extracted at very short time separations. In the future allecsimsider new variance
reduction technigues for a more precise computation of the disconnectgdrda

ii) Gluino-glueballs. The gluino-glueballsd-g) are spin% colour singlet states of a gluon and
a gluino. They are supposed to complete the Wess-Zumino supermultiplet adjthiet mesons
[6]. The full correlator is built up from plaquettes connected by a gluirepagator line:

%Z o8 Tr{Uij () 0% ;at,’be,Tr[UH(y)ab]alﬁlp>. (4.2)
i]
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Figure 1: The masses of the low lying bound states of.thie= 1 SU(2) SYM theory. Shown are the masses
multiplied byrg as a function the squared adjoint pion mass.

The above correlator is a matrix with two independent components in Diraespa
CER (at) = Ca(at) 3P +Cy, (At)y5* . (4.3)

We see agreement in the masses extracted from each component, arabse ttle time antisym-
metric component; to fit the masses. We apply APE smearing for the links and Jacobi smearing
for the fermion fields in order to optimise the signhal-to-noise ratio and to obtagradier plateau

in the effective mass.

iii) Glueballs. According to [7], O glueballs are expected to be members of a second Wess-
Zumino supermultiplet. Their study in SYM presents difficulties which closelgmdsge those
encountered in glueball spectroscopy in QCD and, fortunately, carvdreame with the same
type of techniques, namely, APE smearing with the variational method. Also icdh&swe use
the simplest interpolating operator for the scalar gluebatl Built from single space-like plaquette.

It turns out, however, that the present statistics is not enough to obtelialle determination
of the glueball masses. Therefore, we are planning to increase the satistic

Results. The masses of tha-n’ and the gluino-glueball are displayed in Fig. 1 as a func-
tion of the squared adjoint pion mass in units of the Sommer scale parameterbd@otti state
masses appear to be characterized by a linear dependericgv)?. The gluino-glueball turns
out to be appreciably heavier (50%) than #rg’. Runs with and without Stout-smearing give
consistent results for treen’ mass, while a discrepancy is observed for the gluino-glueball, which
can be interpreted as @(a) discretisation effect. The comparison of the two runérgitl,)? ~
4 in (2fm)3 and (3fm)3 volumes reveals small finite volume effects. The linear extrapolation
of the a-n’ mass to massless adjoint pion (including the four lightest points) giugda- =
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1.247(48) [499(20) MeV]. A rough estimate for the gluino-glueball givegvig-g = 2.5— 3 [1000—
1200 MeV].

5. Summary and conclusions

New results on the spectrum of bound states have been obtained by mdae3 8-PHMC
algorithm with noisy correction. The new algorithm, with an improved gauge raetia Stout-
smeared links, allows to obtain a significantly better performance comparesl poetiously used
TSMB algorithm. This allows us to simulate in significantly larger volume&dm)3 and(3fm)3.
Our first results for the masses are within errors equal in these two icaglying that these vol-
umes are large enough for the study of the particle spectrum. We shalnsyitally investigate
the finite volume effects in future publications.

According to the low-energy effective theory of [6] the)’ and the gluino-glueball belong to
the same supermultiplet and therefore should be degenerate in the SUSY linvitvétaour pre-
liminary results show a gluino-glueball mass systematically heavier tham ghentil the lightest
simulated gluino mass in the weakly broken SUSY region. Whether this outcondésisratisation
artifact or a physical effect will become clear in future studies at finticéaspacings. If the latter
case applies, the interpolating gluino-glueball operator could have dotdwariap with a mem-
ber of a higher supermultiplet. The complete identification of possible supertetdtipquires the
inclusion of the masses of the glueballs and the sealgrbound states.

The computations were carried out on Blue Gene L/P and JuMP system<& aliligh,
Opteron PC-cluster at RWTH Aachen and the ZIV PC-cluster of the tsityeof Miinster.
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