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The SU(3) gauge theory with fermions in the sextet representation is one of several theories of

interest for technicolor models. We have carried out a Schrodinger functional (SF) calculation

for the lattice theory with two flavors of Wilson fermions. Wefind that the discrete beta function

changes sign when the SF renormalized coupling is in the neighborhood ofg2 = 2.0, showing a

breakdown of the perturbative picture even though the coupling is weak. The most straightforward

interpretation is an infrared-stable fixed point.
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1. Motivation—Beyond the Standard Model

Most interesting theories that go beyond the Standard Modelrequire nonperturbative informa-
tion in order to demonstrate their relevance to low-energy physics [1]. Among these are strong-
coupling realizations of the Weinberg–Salam theory; technicolor, in which the Higgs multiplet
arises as bound states of a higher-energy theory; and theories based on extra dimensions, in which
Kaluza–Klein phenomena may depend on strong-coupling physics. Moreover, various theories of
unification start with large gauge groups that reduce to low-energy theories via tumbling and vac-
uum alignment, phenomena that are inherently nonperturbative. Supersymmetry can only apply to
the low-energy world if it is broken by some nonperturbativemechanism.

As a first step in what we hope will develop into a broad attack on gauge theories beyond QCD,
we have chosen to study the SU(3) gauge theory with two flavorsof Wilson fermions in the sextet
representation [2]. The two-loop beta function of this theory crosses zero [3, 4] atg2 ≃ 10.4, which
is a strong coupling; a ladder calculation indicates that the quarks condense and chiral symmetry
is spontaneously broken before this coupling is reached. Ifindeed chiral symmetry is broken in
this theory, it becomes a candidate for a theory of walking technicolor [5], assuming that a lattice
calculation can confirm the slow evolution of the coupling. The survival of the fixed point, on the
other hand, would put the theory in the conformal window and disqualify it for technicolor.

A related issue is the possibility of scale separation, where the confinement scale of the theory
is at a lower energy than the scale of the chiral condensate [6]. This is what initially attracted us to
studying quarks in higher representations than the fundamental.

2. Perturbative renormalization group

Let me begin by reviewing the possibilities raised by the two-loop beta function, as described
by Banks and Zaks [4]. The perturbative expansion is

β (g2) = −
b1

16π2 g4−
b2

(16π2)2g6 + · · · , (2.1)

whereb1 > 0 andb2 < 0. If we truncate at these two terms, the formula give an IR-attractive fixed
point (IRFP) atg = g∗, as shown in Fig. 1.

If g∗ is a weak coupling, then the two-loop calculation may be reliable. Flow into the IRFP
implies that the massless theory possesses conformal dynamics at large distances. This means that
there is no confinement, no chiral condensate, and indeed no particles whatsoever!1

If g∗ is a strong coupling, on the other hand, the chiral condensate will form before the IRFP is
reached, so the quarks will become massive and decouple fromthe IR dynamics. The beta function
past that point, returning to that of the pure gauge theory, will remain negative all the way tog = ∞
and there will be no actual zero. The sketch for this case in Fig. 1 shows the marginal possibility
that the beta function hovers near zero as this decoupling takes place, which is what underlies the
hypothesis of walking.

1We refer here to Casher’s argument [7] that massless quarks cannot form bound states in a vector-coupled gauge
theory unless chiral symmetry is spontaneously broken. Allcolor-singlet Green functions will possess only cuts starting
at q2 = 0.
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Figure 1: Sketch of the beta function if the two-loop zerog∗ occurs at weak coupling (left) or at strong
coupling (right). The green arrows on the axis are the directions of the IR flow. The shape ofβ (g) on the
right indicates walking.

The two-loop beta function makes aprima faciecase for the existence of an IRFP and thus
places the theory in what is called theconformal window[8]. As reviewed in [8], however, a calcu-
lation with the Bethe-Salpeter equation (the “ladder” approximation) points toχSB; a conjecture
based on supersymmetry [9], on the other hand, puts the theory back in the conformal window. A
lattice determination of the beta function can resolve the matter.

3. The Schrödinger Functional method

The Schrödinger functional (SF) [10, 11] is a well-known method for calculating the beta
function of the theory via imposing a background field. Following the method of SF calculations
for QCD, we employ Wilson fermions rather than staggered so that boundary valuesU i

xt (the back-
ground field) can be set on single time slices att = 0 andt = L on anL4 lattice; Wilson fermions
also give us better control over the number of fermion flavors. We add a clover term to removeO(a)

discretization errors, and we fix the clover coefficient self-consistently via tadpole improvement.
Wilson fermions, of course, break chiral symmetry explicitly and one must fixκ = κc to have

a massless theory in the continuum limit. We define the quark mass by the axial Ward identity,

mq ≡
1
2

∂4
〈

Ab
4(t) O

b(t ′ = 0,~p = 0)
〉

〈Pb(t) Ob(t ′ = 0,~p = 0)〉

∣

∣

∣

∣

t=L/2
, (3.1)

whereO is an operator on the boundary att = 0 while A4 andP are the axial and pseudoscalar
densities, measured at zero spatial momentum at the center of the lattice. Tuning tomq = 0 fixes
κ = κc.

As is usual in SF calculations, we give the fermion fields a spatial twist. The boundary con-
ditions then serve as an efficient IR cutoff, even stabilizing the fermion inversions atκ = κc and
allowing us to study the massless theory directly.

In the continuum limit, the background field depends only on the sizeL of the system, so the
method gives the running coupling at the IR scale,g2(L). More precisely, one is to calculate the
potentialΓ ≡− logZ and compare it to the classical Yang-Mills actionScl of the background field
configuration, givingg2(L) via

Γ =
1

g2(L)
Scl . (3.2)
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In a lattice Monte Carlo calculation, however, one cannot calculateΓ directly. The trick is to let the
boundary valuesU i depend on a parameterη . Then by differentiating Eq. (3.2) we relateg2(L) to
the expectation value of an operator, viz.,

∂Γ
∂η

=

〈

∂Sgauge

∂η
− tr

(

1

D†
F

∂ (D†
FDF)

∂η
1

DF

)〉

=
K

g2(L)
, K ≡

∂Scl

∂η
= 37.7. . . (3.3)

To summarize: In order to extract the scaling of the running coupling, we

1. fix the lattice sizeL and the couplingsβ andκ = κc(β );

2. calculateK/g2(L) via the expectation value (3.3), and also

3. calculateK/g2(2L) on a lattice twice as large. The two lattices have the same bare parameters
(β ,κ) and hence the same UV cutoffa. We thus

4. obtain the discrete beta function (DBF), defined as the difference

B(u,2) =
K

g2(2L)
−

K
g2(L)

, (3.4)

which is a function ofu≡ K/g2(L).

We show the result of this procedure in Fig. 2 (left). The DBFB(u,2), obtained from lattices
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Figure 2: Left: Discrete beta functionB(u,2) obtained by comparing lattices of size 44 and 84. Right:
B(u,4/3) obtained from lattices of size 64 and 84. The dashed curves are the two-loop predictions.

of size 44 and 84, evidently crosses zero atg2 ≃ 2.0. This is a much weaker coupling thang2 ≃ 10
as found in two-loop perturbation theory. (For comparison,the two-loop DBF is plotted as a dashed
curve.) On the face of it, this result demonstrates that the massless theory possesses an IRFP and
hence that the IR theory is conformal.

If a lattice of size 44 seems small, we can compare instead lattices of size 64 and 84, which
yield the DBFB(u,4/3) for the smaller scale factor 4/3 (Fig. 2, right). As one might expect, the
result is generally closer to zero thanB(u,2), and hence the error bars are relatively larger. The
crossing of zero is evident nonetheless. We note that the data points in each plot are statistically
independent, but the two plots are linked since the same 84 data are used in each.
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4. Caveat cursor

The DBF is, in principle, a continuum quantity that relates couplings at different IR scalesL.
A lattice calculation of the DBF introduces an implicit dependence on the lattice spacing. It goes
without saying that our results contain lattice artifacts,which we cannot estimate since we have
worked so far at a single lattice spacing for each value ofg and for each rescaling factor (2 and
4/3).

Even when a satisfactory continuum limit is reached, however, one must ask whether the
theory is really described by a single running coupling. After all, in the IR regime any theory will
need more than one term in its Lagrangian to describe its spectrum and interactions, and these terms
will be generated by RG transformations. Continuum perturbation theory automatically limits the
effective Lagrangian to renormalizable couplings, and thus one always speaks of a single beta
function for QCD or other (massless) gauge theories. A lattice theory, on the other hand, can
quickly generate many terms in the effective Lagrangian unless a physically reasonable truncation
is used in the RG transformation.

One necessary condition that the lattice theory be well described by a single coupling at scale
L is to verify thatL is too small for confinement to have set in. Figure 3 is the phase diagram of the
lattice theory. It is clear that on our lattice the IRFP is found in the weak-coupling phase, meaning

5 5.5 6 6.5 7
β

0.13

0.14

0.15

0.16

0.17

κ

(β)

conf

nonconf

κc

Figure 3: Phase diagram in the(β ,κ) plane. The solid curve isκc(β ), where the AWI quark massmq

vanishes. The star marks the couplings corresponding to theIRFP of the SF effective coupling. The other
curve denotes the finite-temperature/finite-volume phase transition forL = 8. Presumably the finite-volume
curve intersects theκc curve, but we have not gone there. See T. DeGrand’s talk [12] for more information
on the phase diagram.

that the IR scaleL = 8a is well within the confinement radius (if any).
If we examine this more closely, the simplicity of a gauge theory at a given scale may be judged

by the behavior theqq̄ potential. If the potential is almost Coulomb, meaningV(r) = g2(r)/r with
a couplingg that varies only slowly withr, then one may proceed as ifg is the only coupling.
Again, we expect that this breaks down at large distances in QCD, whereV(r) first becomes linear
in r as the confining flux tube forms and then decays exponentiallyas it breaks. It may be seen
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in Fig. 4 that when we measureV(r) we find it to be consistent with a Coulomb potential in the
neighborhood of the couplings corresponding to the IRFP.

Figure 4: Examples of theqq̄ potential from our data. On the left, the string tension is large; the Sommer
parameterr0/a is measurable and we can obtain a good fit toV(r). On the right, the string tension shrinks
away as the temporal extent of the Wilson loop grows, and we cannot perform a reliable fit toV(r). The plot
on the right represents the situation near the fixed point in Fig. 3. The lattice sizes are 83×12 (left) and 124

(right).

Confirmation of the IRFP will thus come from (1) checking the DBF with more and larger
volumes, (2) further understanding of the phase diagram in the (β ,κ) plane, and eventually (3)
understanding of the continuum limit. All this is in progress. Then the challenge will be to measure
properties of the conformal theory at the fixed point. This will entail at least the calculation of
operator exponents, which will govern how the fixed point is approached from the theories in its
basin of attraction and from nearby massive theories.

More work on this model has been presented by Daniel Nogradi at this conference [13]. This
work was supported in part by the Israel Science Foundation under grant no. 173/05 and by the US
Department of Energy. Our computer code is based on version 7of the publicly available code of
the MILC collaboration [14].
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