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1. Introduction

Gauge theories with fermions in other than fundamental representation may have qualitatively
different features from QCD. One of these features is so called “walking” behaviour, which is
required by a class of technicolor theories [1]. Technicolor is an extension to the standard model,
where the Higgs boson is replaced with a composite particle, essentially a scalar “meson” which
consists of techniquarks interacting through a gauge interaction, technicolor.

In this project we study the properties of SU(2) gauge theory with two Dirac fermions in
the adjoint (2-index symmetric) representation. This is a candidate theory for a “minimal” (i.e.
simplest) walking technicolor [2]. For this to be viable, the theory should either have an IR fixed
point (where it shows conformal behaviour) or an almost fixed point, where the coupling evolves
extremely slowly with the energy scale. This theory has been studied previously in [3, 4, 5]. (See
also [6, 7, 8, 9] for recent studies of related theories.)

In this first stage we shall investigate the excitation spectrum of the theory and estimate its
lattice phase diagram. We use considerably larger volumes than the earlier published work. Full
results will be published in [10].

2. Lattice action

The lattice action of SU(2)+adjoint quark theory is S = Sg + Sf, where Sg is the standard
plaquette gauge action and Sf is the Wilson fermion action for spinors in the adjoint representation:

Sf = a4
∑
x

ψ̄(x)Dψ(x) (2.1)

= ∑
x

ψ̄ψ(x)−κ ∑
µ

[
ψ̄(r− γµ)Vµ(x)ψ(x)+ ψ̄(r + γµ)V †

µ (x−µ)ψ(x−µ)
]
. (2.2)

Here the adjoint link variables V are related to the fundamental representation ones as

V ab
µ (x) = 2Tr(SaUµ(x)SbU†

µ(x)), (2.3)

where Sa = 1
2 σa, a = 1,2,3 are the generators of the fundamental representation.

As usual, the lattice action is parametrized with

β =
2Nc

g2 =
4
g2 and κ =

1
8+2mQ,bare

, (2.4)

where mQ,bare is the bare mass parameter.

3. Lattice simulations

The simulations were carried out with five different values of β = 1.3, 1.7, 1.9, 2.2 and 2.5.
For each value of β we used 5 to 11 different values of κ . The volumes used were 244 and 324.
The updates were performed using standard hybrid Monte Carlo algorithm and the number of
trajectories was 100-700 for a single run. The timestep ∆τ used was 0.02 for larger values of mass
and was decreased to 0.004 closer to the zero mass limit. The number of integration steps Ns was
chosen so that Ns×∆τ ∼O(1).
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Particle quark content QCD equivalent
Pseudoscalar meson Uγ5Ū π

Vector meson UγµŪ ρ

Axial vector meson Uγµγ5U b1

“Higgs” UŪ +DD̄ f0 or σ

Spin 1/2 baryon UUD proton
Spin 3/2 baryon UUU ∆

Quark Gluon UG NA

Table 1: List of some particles in adjoint representation

We also performed some simulations in fundamental representation in order to validate the
algorithms and to confirm that we observe qualitatively different behaviour and not e.g. lattice
artifacts.

3.1 Phase diagram

First, in order to obtain the relevant parameter range we probe the phase diagram of the theory.
We are especially interested in the critical line κc(β ), along which the quark mass vanishes. The
quark mass is measured using the axial Ward identity (“PCAC mass”):

mQ = lim
t→∞

1
2

∂tVPS

VPP
, (3.1)

where the currents are

VPS(x0) = a3
∑

x1,x2,x3

〈ū(x)γ5d(x)ū(0)γ5d(0)〉 (3.2)

VPP(x0) = a3
∑

x1,x2,x3

〈ū(x)γ0dγ5(x)ū(0)γ0γ5d(0)〉. (3.3)

On the left panel of Fig. 1 we have plotted the measured quark masses against 1/κ , and on the
right panel we have extrapolated the results to the zero quark mass limit. We include here also the
results from Del Debbio et al. [3] and Catterall et al. [5]. All of the results agree well with each
other.

Authors of [5] find a phase transition around β = 1.9 at zero mass. We also observe a change
in the behaviour of the system at β ≈ 1.9: when β <∼1.9 and we decrease the quark mass (κ is
increased), the system has a sharp phase transition around mQ ≈ 0, making the simulations in
practice impossible at large volumes. This is especially noticeable at β = 1.9 simulations. This
new phase is an artifact of Wilson fermions, corresponding to the “Aoki phase” of lattice QCD. On
the other hand, when β >∼1.9 there is no sharp transition and, if the volume is not too large, we can
decrease mQ below zero without problems.

3.2 Mass spectrum

The “hadron” spectrum with adjoint representation quarks has more states than with the fun-
damental representation quarks. In Table 1 we have listed some of the low energy states. Here we

3



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
8
)
0
6
5

Spectrum of SU(2) gauge theory with two fermions in the adjoint representation Ari Hietanen

−0.2
−0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

a
m

Q

4 5 6 7 8 9

1/κ

β = 1.3
β = 1.7
β = 1.9
β = 2.2

β = 2.5

0

0.1

0.2

0.3

κ

1 2 3

β

β = 0

β =∞

mQ < 0

mQ > 0

our data
Catterall et al.
Del Debbio et al.

Figure 1: Left: Quark masses as functions of κ . Right: The phase diagram with mQ = 0 line. Our results
agree well with other groups.

will present the measurements of the pseudoscalar and vector 2-quark states, “mesons”, and the
spin 1/2 and spin 3/2 3-quark states, “baryons”.

The measurement of the axial vector would be interesting, because it has been speculated that
ratio MAxial/Mρ could be smaller than one for a conformal theory [11]. Unfortunately, we do not
have yet good enough statistics at large volumes to obtain reliable measurement. The “Higgs”
particle includes a quark disconnected part and we have not attempted to measure it.

The masses of the excitations are estimated by fits to the time sliced averaged correlation
functions. We use wall sources at timeslice t = 0 (with Coulomb gauge fixing) and point sinks. For
example, the correlation function for mesons reads

GO(t) ∝ ∑
x,y1,y2

〈ψ̄(x, t)ΓOψ(x, t)ψ̄(y1,0)ΓOψ(y2,0)〉, (3.4)

where ΓO = γ5 for the pseudoscalar and ΓO = γµ , µ = 1,2,3 for the vector meson. The baryon
correlation functions are measured analogously.

The masses of the pseudoscalar and vector mesons are plotted in Figs. 2 and 3. For a conformal
theory one expects that all particle masses approach zero as mQ → 0, with the same exponent.
However, at small β we observe a more or less standard pattern of chiral symmetry breaking: as
mQ → 0 the pseudoscalar meson (Goldstone bosons for chiral symmetry breaking) mass behaves
approximately as ∝

√mQ at small mQ, whereas vector meson remains massive. On the other hand,
at large β >∼2 the mesons are practically degenerate, and their masses almost vanish as mQ → 0.
The baryon masses are shown in Fig. 4 and show a similar pattern: at small β they extrapolate to a
finite value as mQ→ 0, but at large β the masses decrease linearly, but with a small intercept.

Thus, one can argue that at large β the results are compatible with a conformal behaviour (if
we ignore the small intercepts in particle masses as mQ → 0). However, we emphasize that this
is qualitatively also compatible with standard QCD-like running coupling: we have also measured
the meson spectrum in theory with SU(2) gauge + 2 fundamental representation fermions, and the
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Figure 2: Mass of π , (pseudoscalar) and mass of ρ (vector meson) with different β as a function of PCAC
quark mass.
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Figure 3: Ratio between π (pseudoscalar) and ρ (vector meson) mass with different β as a function of
PCAC quark mass. In the left panel the results are for adjoint representation and in the right panel for the
fundamental representation.

mass pattern is comparable to the one shown in Fig. 2. On Fig. 3 we show the mass ratios of
pseudoscalar and vector mesons for adjoint and fundamental fermions. For fundamental fermions
the reason for this behaviour is easy to understand: at small β we observe chiral symmetry breaking,
as we should, but at large β the lattice spacing becomes so small that the linear size of the system
becomes much smaller than the hadron size. Thus, the quarks become effectively deconfined, and
we observe near-conformal behaviour also with fundamental quarks at mQ ≈ 0.

Thus, whether or not the adjoint quark theory has conformal or near-conformal behaviour (and
hence an IR fixed point or “walking” coupling), or QCD-like running coupling, is very difficult to
distinguish from the mass spectrum. However, we note that if there is a genuine IR fixed point
where the theory becomes conformal, there must be a phase transition somewhere along the crit-
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Figure 4: Mass of proton (spin 1/2 baryon) and ∆ (spin 3/2 baryon) as a function of PCAC quark mass.

ical mQ = 0-line (κc(β )) where the theory goes from the chirally broken phase (at small β ) into
the phase controlled by the IR fixed point (at large β ), where IR physics is conformal. In our
simulations we do observe behaviour compatible with this: there is a clear change in the mQ→ 0
limit around β ≈ 2. Indeed, around this point it is very difficult to even reach small mQ values
with lattice Monte Carlo. If this scenario is the correct one, then the chiral symmetry breaking is a
lattice artifact (or rather, UV cutoff artifact) not present in the continuum theory. The existence of
a critical point was also suggested in [5].

4. Conclusions

We have presented preliminary results of the lattice measurement of the mass spectrum in
SU(2) gauge theory with two fermions in the adjoint representation. This theory has been proposed
to have either a walking (i.e. very slowly evolving) coupling or even an IR fixed point, where the
theory becomes conformal (in the massless fermion limit). In this case the physical states of the
theory are all massless. We indeed observe an almost-massless behaviour at large inverse lattice
coupling β . However, resolving the reason for this behaviour on the lattice is complicated by
the fact that in practice the spectrum for a theory with a QCD-like running coupling also appears
conformal at large β , due to the fact that the lattice volume becomes so small that the system is
essentially deconfined. In order to resolve the issue more direct evaluation of the evolution of the
coupling is required, using e.g. Schrödinger functional methods.
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