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1. Introduction

With the existing evidence for the triviality of the Higgscser of the electroweak Standard
Model, rendering the removal of the cutdfffrom the theory impossible, physical quantities in this
sector will, in general, depend on the cutoff. Though thirietion strongly limits the predictive
power of any calculation performed in the Higgs sector, iemmgp up the possibility of drawing
conclusions on the energy sc#leat which new physics has to set in, once, for example, thesdigg
mass has been determined experimentally.

The main target of lattice studies of the Higgs-Yukawa seofahe electroweak Standard
Model has therefore been the non-perturbative deternoinati the cutoff-dependence of the upper
and lower bounds of the Higgs boson mass [1, 2] as well as @aydproperties. There are two
main developments which warrant to reconsider these aqumestifirstly, with the advent of the
LHC, we are to expect that properties of the Standard Modggsiboson, such as the mass and
the decay width, will be revealed experimentally. Seconthigre is, in contrast to the situation
of earlier investigations of lattice Higgs-Yukawa mode3s 4, 5, 6], a consistent formulation of
a Higgs-Yukawa model with an exact lattice chiral symmeifj/jased on the Ginsparg-Wilson
relation [8], which allows to emulate the chiral charactéthe Higgs-fermion coupling structure
of the Standard Model on the lattice while lifting the unwethfermion doublers at the same time.

Before addressing the questions of the Higgs mass bounddexmay properties, we started
with an analytical [9] and a numerical [10] investigationtteé phase structure of the model in order
to localize the region in (bare) parameter space where eaksimulations of phenomenological
interest should be performed. First results on Higgs masmd® from chirally invariant lattice
Higgs-Yukawa models have already been presented in [11, 12]

In the present paper we study the dependence of the Higgsandlse model parameters. We
check that the smallest and largest Higgs masses are indit@itied at vanishing quartic Higgs
self-coupling and at infinite quartic coupling, respediiyas expected from perturbation theory.
We then present our preliminary results on the cutoff-depece of the lower Higgs mass bound
and check the strength of the finite volume effects. Sincatbementioned results were obtained
in the mass degenerate case, with equal top and bottom quark masses, we also investipate t
effect of the top-bottom mass splitting on the Higgs madswahg ultimately to extrapolate to the
- numerically extremely demanding - physical situationgnehthe bottom quark is approximately
40 times lighter than the top quark. We then end with a bri¢ook towards the upper Higgs mass
bound.

2. The SU2). x U(1)r lattice Higgs-Yukawa model

The model, we consider here, is a four-dimensional, chiralariant SU(2). x U (1)r lat-
tice Higgs-Yukawa model [7], aiming at the implementatidriree chiral Higgs-fermion coupling
structure of the pure Higgs-Yukawa sector of the Standardéliceading

Ly = ¥ (t,b), #br—y: (,b) _Ptr+c.c, (2.1)

with y; » denoting the top and bottom Yukawa coupling constants. terieave restricted ourselves
to the consideration of the top-bottom douleb) interacting with the complex Higgs doublét
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(¢ = it20*, 1 : Pauli-matrices), since the Higgs dynamics is dominatedhieycoupling to the
heaviest fermions. For the same reason we aégect any gauge fields this approach.

The fields considered in this model are one four-componeat,Higgs field®, being equiva-
lent to the complex doubla of the Standard Model, and; top-bottom doublets represented by
eight-component spinorg® = (™ b)), i =1,...,N;.

The chiral character of the targeted coupling structurd)(% preserved on the lattice by
constructing the fermionic actio®- from the Neuberger overlap operator [13] according to

\ ) )

S=3 oyl (22)
1=

M = 7 1+ P, g diag(%, o) Py + P_ diag($, o) 9P-, (2.3)

where the Higgs fieldb, was rewritten as a quaternionic,x2 matrix g, = ®21 — iCDﬂ]Tj, with

n denoting the site index of thed x L;-lattice and? the vector of Pauli matrices, acting on the
flavour index of the fermionic doublets. The left- and rigistnded projection operatoPs. and the
modified projectors®; are given as

p=12¥  p Vs:vs@—%@“’v)), (2.4)

2
with p being the radius of the circle of eigenvalues in the complexe of the free Neuberger
overlap operator [13]. This action now obeys an exactBUx U(1)r lattice chiral symmetry.
ForQ_ € SU(2) andUg € U (1) the action is invariant under the transformation
Y—URP W+QP @, §— JP.Qf+ P UL, (2.5)
90— UrpQ, @' —QLo'Ul (2.6)
Note that in the mass-degenerate casey = yp, this symmetry is extended to $2) x SU(2)g.

In the continuum limit the symmetry (2.5,2.6) recovers thattuum SUW2), x Ur(1) chiral sym-
metry and the lattice Higgs-Yukawa coupling becomes edgmido (2.1) when identifying

P2 4 id} N PO +id3 Yo
¢n:_c'<¢§_i¢§>a (ﬁn:”—Zd’n:_C’(_q:%_Hqg% , and Yt,b:% (2.7)

for some real, non-zero consta@t Note that in absence of gauge fields the Neuberger Dirac
operator can be trivially constructed in momentum spagwesits eigenvalues and eigenvectors

are explicitly known. This will be exploited in the numeri@@nstruction of the overlap operator.
Finally, the lattice Higgs actioBy is given by the usual lattic®*-action

~ N 2
So=—RY O [Pnip+Pn ] +5 OiPn+A Y (Pl —1)7, (2.8)
n,u n n
which is equivalent to the continuum notation
1 U 1 A 2
S = 3 {5 (000), Dhen+ 3mP0lon+ 3, (6180}, 29)
. !

with the bare massn and the bare quartic coupling constant The connection is established
through a rescaling of the Higgs field and the involved coyplionstants according to

[ ®2+id} A-al 1 2NfA — 8K g
¢n=—\/ﬂ<q’”+'q’”>, A A ImANAZEK W (2.10)

fbg—iq)ﬁ :Wa P y Ytb= P

X
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3. Numerical results

The general method we apply to determine the lower and uppgysHnass bounds is the
numerical evaluation of the whole range of Higgs massesatgproducible within our model in
consistency with phenomenology. The latter requiremestticts the freedom in the choice of the
model parameteré,yt,b,ﬁ\ due to the phenomenological knowledge of the top and bottasses,
i.e. m = 175GeV andn, =~ 4.2GeV, respectively, thus fixing the renormalized Yukawagdimg
constants for the top and bottom quark. Furthermore, theeiruas to be evaluated in the broken
phasej.e. at non-vanishing vacuum expectation value of the Higgs fieldz 0, close to the phase
transition to the symmetric phase. We use the phenomemalbgknown valuevev= 246 GeV to
determine the lattice spacirggand thus the physical cutoff according to

V2K - ()
VZg-a’
where (V) denotes the bare lattice vev and the Goldstone renormializebnstan?g is obtained
from the lattice Goldstone propagatégl(pz) measured in the simulation witp? denoting the
squared lattice momenta. For the numerical evaluation efrttodel we have implemented a
PHMC-algorithm, allowing to access the physical situatblodd N¢. All results in the following
are preliminary and have been obtained\at= 1 with degenerate Yukawa coupling constants,
i.e.  =Yp (unless otherwise stated), tuned to reproduce the pheradaggcally known top quark
mass. However, we are currently working also onlthe= 3 results to account for the colour index
(even though gauge fields are absent here).

2R - p?

246GeV=
e Zc

AN=at Gl = (3.1)
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Figure 1: (a) The dependence of the Higgs magson the quartic self-coupling constahtat A = 400 GeV
on a 16 x 32-lattice for constant Yukawa couplings. The dashed linticiates the\ = 0 result. (b) The
corresponding Higgs mass shiﬁeﬁ versus the quartic coupling constant The dashed line is a linear fit
through the data points.

3.1 A-dependence of Higgs mass at < 1

For a given cutoffA these requirements still leave open an one-dimensionedidm@, which
can be parametrized in terms of the quartic self-couplingstamtA. However, this remaining
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freedom can be fixed, since it is expected from perturbati@ony that the lightest Higgs masses
are obtained at vanishing self-couplidg= 0, and the heaviest masses at infinite coupling oo,
according to the one-loop perturbation theory result ferkhiggs mass shift [14]

Omf =g —m? 0 (A -2 —¥g) - A2

(3.2)

One should remark here that this argument is not complateg she phase transition line changes
for varying A, thus making the bare Higgs massa function ofA for fixed cutoff A and constant
Yukawa coupling. In fact, the bare mass decreases withasarg self-coupling [9] (in the weak
coupling regime), contributing to thie-dependence ohy with opposite sign as compared to (3.2).
In Fig. 1a we therefore check that the lightest Higgs masses @espite the latter effect - never-
theless obtained at vanishing self-coupling, thus allgwrestrict the search for the lower Higgs
mass bounds to the setting= 0 in the following. The expected linear behaviour in the netsf

with increasing) is clearly observed in Fig. 1b.
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Figure 2: (a) The lower Higgs mass boumﬁW versus the cutoff\ determined on several lattice sizes. To
illustrate finite volume effects, simulations have beenmewrith identical parameter sets but different lattice
sizes. Runs with same parameter sets are connected viaddastseto guide the eye. (b) Dependence of
lattice Higgs massasy on the lattice sizés at A = 400 GeV and\ ~ 1000 GeV.

3.2 Cutoff-dependence of lower Higgs mass bound and finite kome effects

For the determination of the cutoff-dependence of the Idhiggs mass bound we evaluate the
Higgs mass ak = O for several values of\. Two restrictions limit the range of accessible energy
scales: on the one side all particle masses have to be smallazed toA\, to avoid cutoff-effects,
on the other side all masses have to be large compared toubesénlattice size to avoid finite
volume effects. As a minimal requirement we demand heredhatarticle massem in lattice
units fulfill m < 0.5 andm- Ls; > 2. For a lattice with side lengthiss = Ly = 32, a degenerate
top/bottom quark mass of 175GeV, and Higgs masses ranging40 to 70 GeV one can access
energy scalea from 350GeV to approximately 1100 GeV. In Fig. 2a we show thaimed Higgs
masses versus the cutdff To illustrate the influence of the finite lattice volume wevéaerun
some of the simulations with exactly the same parameténgstbut different lattice sizes. Those
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data points belonging to the same parameter sets are cedr®ctines to guide the eye. While the
finite volume effects are mild at = 400GeV withniy - Ls; > 3.2 on the 3%-lattice, the vev, and
thus the associated cutof, as well as the Higgs mass itself vary strongly with incregdattice
sizelLs at A =~ 1000GeV as can be seen in Fig. 2b. Larger lattices are retjbeee to determine
the Higgs mass reliably also at this energy scale.

3.3 Dependence of lower Higgs mass bound on top-bottom masghtting

So far, the presented results have been determined in the degenerate caseg. y = Yy,
which is numerically easier accessible, opening up thetopresiow the results are influenced
when bringing the top-bottom mass split to its physical galle. m,/m ~ 0.024. From (3.2)
one expects the Higgs mass sldifty, to grow quadratically with decreasiryg and that is exactly
what is observed in Fig. 3b. Here the top quark mass, theiquanipling, and the cutoff are held
constant, while loweringn, to its physical value. However, the Higgs mass itself dog¢snuoease
but decreasewith decreasingy, as shown in Fig. 3a. This is because the first effect in the mass
shift is over-compensated by the shift in the phase tramslthe, which is moved towards smaller
bare Higgs masses [9].
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Figure 3: (a) The Higgs mass versus the squared ratio of the top andrboftikawa coupling constants
[Yo/¥t]? on a 12 x 32-lattice for constant cutofi = 400GeV,A = 0, andm = 175GeV. (b) The corre-
sponding Higgs mass shifts vers[y§/yt]2. The dashed line is a linear fit through the data points.

3.4 Outlook towards upper Higgs mass bounds

Finally, we turn towards the determination of the upper KBiggass bounmﬂp(/\). First, we
check that the largest Higgs masses are indeed obtainee-ab. This can be clearly observed in
Fig. 4b where we plot the Higgs massg; versus the quartic self-coupling constant. We therefore
derive the upper Higgs mass bounds in the following from &itons with infinite self-coupling.

In Fig. 4a we present the corresponding results for the tdegiendence ai’(A). As expected
the obtained upper mass bounds fall quickly with increasingff A. Note, however, that the
presented results are only preliminary, since the cons@leolumes are rather small and no finite
volume effects have been studied in this scenario so far.
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Figure 4: (a) The upper Higgs mass bourn:i,p versus the cutoff\ as determined on a $6& 32-lattice at
infinite quartic self-couplind = «. (b) The dependence of the Higgs mass on the quartic cougpingtant
A in the strong quartic coupling regime on a3t232-lattice. The dashed line representsihe  resuilt.
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