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1. Introduction

Pion-pion scattering at low energies is the simplest and best-understood hadron-hadron scat-
tering process. Its simplicity and tractability follow from the fact that the pions are identified
as the pseudo-Goldstone bosons associated with the spontaneous breaking of the approximate
SU(2)L ⊗ SU(2)R chiral symmetry of QCD. For this reason, the low-momentum interactions of
pions are strongly constrained by the approximate chiral symmetry, more so than other hadrons.
The scattering lengths for ππ scattering in the s-wave are uniquely predicted at leading order (LO)
in chiral perturbation theory (χ-PT) [1]:

mπ aI=0
ππ = 0.1588 ; mπ aI=2

ππ = −0.04537 , (1.1)

at the physical charged pion mass. Subleading orders in the chiral expansion of the ππ amplitude
give rise to perturbatively-small deviations from the tree level, and contain both calculable non-
analytic contributions and analytic terms with new coefficients that are not determined by chiral
symmetry alone [2, 3, 4]. In order to have predictive power at subleading orders, these coefficients
must be obtained from experiment or computed with Lattice QCD. While the perturbative expan-
sion of the ππ scattering amplitude is expected to converge rapidly, the KK amplitude is expected
to receive sizable contributions from higher orders. Naive expectations suggest that perturbative
corrections to the KK scattering amplitude are set by m2

K/Λ2
χ .

Recently, we (NPLQCD) have performed the first n f = 2 + 1 flavor QCD calculation of the
π+π+ and K+K+ scattering lengths [5, 6, 7]. The π+π+ scattering length has been calculated
with percent level precision. Domain-wall valence quarks were computed on various ensembles of
MILC lattices (staggered sea quarks), and mixed-action chiral perturbation theory [8, 9] was used
to eliminate the leading effects of the finite lattice-spacing. The results of the lattice calculations are
found to be consistent with tree-level chiral perturbation theory, even at large pion and kaon masses,
within the uncertainties of the calculations. We have also performed a quenched calculation of the
potentials between two B-mesons. As the effective field theory that gives rise to these potentials is
the same as that describing the interactions between nucleons (up to the values of the counterterms),
these potentials provide insight into the interactions between two or more nucleons.

2. Hadronic Interactions, the Maiani-Testa Theorem and Lüscher’s Method

Extracting hadronic interactions from Lattice QCD calculations is far more complicated than the
determination of the spectrum of stable particles. This is encapsulated in the Maiani-Testa theo-
rem [10], which states that S-matrix elements cannot be extracted from infinite-volume Euclidean-
space Green functions except at kinematic thresholds 1. Of course, it is clear from the statement
of this theorem how it can be evaded, one computes Euclidean-space correlation functions at fi-
nite volume to extract S-matrix elements, the formulation of which was known for decades in
the context of non-relativistic quantum mechanics [11] and extended to quantum field theory by
Lüscher [12, 13]. Lüscher showed that the energy of two particles in a finite volume depends in a
calculable way upon their elastic scattering amplitude and their masses for energies below the in-
elastic threshold. As a concrete example consider π+π+ scattering. A π+π+ correlation function

1An infinite number of infinitely precise calculations would allow one to circumvent this theorem.
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in the A1 representation of the cubic group [14] (that projects onto the s-wave state in the continuum
limit) is

Cπ+π+(p, t) = ∑
|p|=p

∑
x,y

eip·(x−y)〈π−(t,x) π−(t,y) π+(0,0) π+(0,0)〉 . (2.1)

In relatively large lattice volumes the energy difference between the interacting and non-interacting
two-meson states is a small fraction of the total energy, which is dominated by the masses of the
mesons. In order to extract this energy difference the ratio of correlation functions, Gπ+π+(p, t),
can be formed, where

Gπ+π+(p, t) ≡
Cπ+π+(p, t)

Cπ+(t)Cπ+(t)
→

∞

∑
n=0

An e−∆En t , (2.2)

and the arrow denotes the large-time behavior of Gπ+π+ . The single pion correlation function is
Cπ+(t). The energy eigenvalue, En, and its deviation from the sum of the rest masses of the particle,
∆En, are related to the center-of-mass momentum pn by ∆En ≡ En − 2mπ = 2

√

p2
n + m2

π −

2mπ . To obtain pcotδ (p), where δ (p) is the phase shift, the square of the center-of-mass momen-
tum, p, is extracted from this energy shift and inserted into [11, 12, 13, 15]

pcot δ (p) =
1

πL
S

(

(

pL
2π

)2
)

, (2.3)

which is valid below the inelastic threshold. The regulated three-dimensional sum is [16]

S(x) ≡
|j|<Λ

∑
j

1
|j|2 − x

− 4πΛ , (2.4)

where the summation is over all triplets of integers j such that |j| < Λ and the limit Λ → ∞ is
implicit. Therefore, by measuring the energy-shift, ∆En, of the two particles in the finite lattice
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Figure 1: The function S(η) vs. η , defined in Eq. (2.4), has poles only for η ≥ 0.

volume, the scattering phase-shift is determined at ∆En.
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3. π+π+ Scattering

The prediction for the physical value of the I = 2 ππ scattering length from our mixed-action
calculation is mπ aI=2

ππ = −0.04330 ± 0.00042 [5, 6], which agrees within uncertainties with the
(non-lattice) determination of CGL [17]. In Table 1 and Fig. 2 we offer a comparison between
various determinations 2.

mπ aI=2
ππ

χ-PT (Tree Level) −0.04438
NPLQCD (2007) −0.04330±0.00042

E 865 (2003) −0.0454±0.0031
NPLQCD (2005) −0.0426±0.0018
MILC (2006)* −0.0432±0.0006
MILC (2004)* −0.0433±0.0009

CGL (2001) −0.0444±0.0010

Table 1: A compilation of the various calculations and predictions for the I = 2 ππ scattering length.
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Figure 2: The left panel shows mπ aI=2
ππ vs. mπ/ fπ (ovals) [5, 6]. Also shown are the experimental value

from Ref. [18] (diamond) and the lowest quark mass result of the n f = 2 calculation of CP-PACS [19]
(square). The blue band corresponds to a fit to the lightest three data points using the one-loop MAχ-PT
formula, and the red line is the tree-level χ-PT result. The right panel shows a bar chart of the various
determinations of the I = 2 ππ scattering length tabulated in Table 1. See footnote 2.

4. K+K+ Scattering

The K+K+ scattering length is calculated in the same way as the π+π+ scattering length, but re-
quires strange quark propagators. The results of the lattice calculation of K+K+ scattering are
extrapolated to the physical values of mπ+/ fK+ = 0.8731±0.0096, mK+/ fK+ = 3.088±0.018 and

2The stars on the MILC results indicate that these are not lattice calculations of the I = 2 ππ scattering length
but rather a hybrid prediction which uses MILC’s determination of various low-energy constants together with the Roy
equations), and the Roy equation determination of Ref. [17] (CGL (2001).
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Figure 3: mK+aK+K+ versus mK+/ fK+ [7]. The points with error-bars are the results of this lattice calcu-
lation (not extrapolated to the continuum). The solid curve corresponds to the tree-level prediction of χ-PT.
The point denoted by a star and its associated uncertainty is the chiral extrapolation to the physical meson
masses and to the continuum.

mη/ fK+ = 3.425±0.0019 assuming isospin symmetry, and the absence of electromagnetism. Con-
sidering the systematics uncertainties in the chiral extrapolation of the results shown in Fig. 3, along
with the statistical uncertainties, gives mK+aK+K+ = −0.352±0.016 [7], where the statistical and
systematic errors have been combined in quadrature.

5. BB Potentials

Energy-independent potentials can be rigorously defined and calculated for systems composed of
two (or more) hadrons containing a heavy quark in the heavy-quark limit, mQ → ∞. This is inter-
esting for more than academic reasons as the light degrees of freedom (dof) in the B-meson have
the same quantum numbers as the nucleon, isospin- 1

2 and spin- 1
2 . As such, the EFT describing the

interactions between two B-mesons has the same form as that describing the interactions between
two nucleons, but the counterterms that enter into each EFT are different. Therefore, a deeper un-
derstanding of the EFT description of nuclear physics can be gained by Lattice QCD calculations
of the potentials between B-mesons. We computed the potential between two B-mesons in the four
possible spin-isospin channels (neglecting B0

d −B
0
d mixing) in relatively small volume DBW2 lat-

tices with L ∼ 1.6 fm, with a pion mass of mπ ∼ 403 MeV, and lattice-spacing of b ∼ 0.1 fm [20].
The calculation was quenched and the naive Wilson action was used for the quarks. At this rela-
tively fine lattice spacing, much finer than previous calculations, we were able to extract a non-zero
potential, but the small volume meant that the contributions to the potential from image B-mesons
(periodic BC’s) were visible.

Constructing the t-channel potentials, defined via the quantum numbers of the exchange par-
ticles, in keeping with nuclear physics tradition, isolated statistical fluctuations into the channel
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associated with the “σ”-meson, leaving the channels with the quantum numbers of the π , ρ and ω
with relatively small statistical errors. The potentials are shown in Fig. 4.
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Figure 4: The potentials between B-mesons in the finite lattice volume. V (L)
σ ,V (L)

τ ,V (L)
στ , and V (L)

1 correspond
to the potentials in the exchange-channels with spin-isospin of (J, I) = (1,0), (0,1), (1,1) and (0,0).

Given the uncertainties in the potentials, and the number of counterterms that appear in the
EFT describing the long- and medium- distance interactions between the B-mesons, it was possible
to make only a parameterization of each potential beyond the leading light-meson contribution.
Since only the longest range contribution to the potential in each channel can be identified, we fit
our results at large separations, |r|> Λ−1

χ , using the finite-volume versions of the simplified infinite-
volume potentials, The short distance forms are entirely model dependent and are the simplest
forms that we could find that provide a reasonable description of the data. Using the measured
values and uncertainties of mπ and mρ and the physical value of fπ we first determine the light-
meson couplings by fitting the finite-volume potentials at the two largest separations.3 The resulting
BBπ coupling is found to be g = 0.57±0.06.

6. Conclusions

I have presented the results of recent calculations by the NPLQCD collaboration of the π +π+

and K+K+ scattering lengths, and the potentials between two B-mesons. Percent level precision
predictions for the π+π+ scattering length were made possible by recent theoretical progress in
describing mixed-action calculations with chiral perturbation theory and by the large number of
domain-wall propagators (∼ 2.5×104) that were calculated on the coarse MILC lattices ensembles.

The lattice results for meson-meson scattering pose an interesting puzzle. The π +π+ scatter-
ing length tracks the current algebra result up to pion masses that are expected to be at the edge

3Simple fits using the infinite-volume long range behavior were considered in Ref. [21].
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of the chiral regime in the two-flavor sector. While in the two flavor theory one expects fairly
good convergence of the chiral expansion and, moreover, one expects that the effective expansion
parameter is small in the channel with maximal isospin, the lattice calculation clearly imply a can-
cellation between chiral logs and counterterms (evaluated at a given scale). The same phenomenon
occurs in K+K+ scattering (Fig. 3) where the chiral expansion is governed by the strange quark
mass and is therefore expected to be more slowly converging. The π +K+ scattering length exhibits
similar behavior [22]. This mysterious cancellation between chiral logs and counterterms for the
meson-meson scattering lengths begs for an explanation.
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