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1. Introduction

In Quantum Chromodynamics (QCD), the topological susbéii ( ;) is the most crucial
guantity to measure the topological charge fluctuation$efQCD vacuum, which plays an im-
portant role in breaking thea(1) symmetry. Theoreticallyy; is defined as

X = [%(P09P(0),  PX)= 3sEpnattTFin (X)Frg ()] 1)

wherep(x) is the topological charge density expressed in term of thiixaealued field tensor
Fuv. With mild assumptions, Witten [1] and Veneziano [2] obtaina relationship between the
topological susceptibility in the quenched approximatmal the mass af’ meson (flavor singlet)
in full QCD with Nt degenerate flavors, namejy,(quenchedi = fzm?, /(4Ny) where f; = 131
MeV, the decay constant of pion. This implies that the masg’a$ essentially due to the axial
anomaly relating to non-trivial topological charge fludtaas, which can turn out to be nonzero
even in the chiral limit, unlike those of the (non-singlebpaoximate Goldstone bosons.

Using the Chiral Perturbation Theory (ChPT), Leutwyler &mdilga [3] obtained the follow-
ing relation in the chiral limit

> )+ﬁm@,(m=2+n, (1.2)

Xt=7"T"—"—""""—"~
1 1 1
<ﬂ+ﬁ+ﬁ

wherem,, my, andm are the quark masses, ahds the chiral condensate. This implies that in the
chiral limit (m, — 0) the topological susceptibility is suppressed due taivatequark loops. Most
importantly, (1.2) provides a viable way to extracfrom x; in the chiral limit.

From (1.1), one obtains
(X)) o [q

Q 9 Qt == /d Xp(X),

whereQ is the volume of the system, ai@jj is the topological charge. Thus, one can obpgiby
counting the number of gauge configurations for each topcdbgector. Obviously, for a set of
gauge configurations witg); = 0, it givesx; = 0. However, even for a topologically-trivial gauge
configuration, it may possess non-trivial topological &tidns in sub-volumes. Thus, one can
measurey; using the correlation of the topological charges of two galmes.

In general, for any topological sector wi, using saddle point expansion on the QCD par-
tition function in a finite volume, it can be shown that [4]

Xt =

. 1 2 Cyq _
i (p(¥p(O) = g (T x5 ) + 0027 (1.3)

wherecs = — & [(Qf)a—0— 3(Q?)2_,] . However, for lattice QCD, it is difficult to extragt(x) and
Q: unambiguously from the gauge link variables, due to thelramastrong fluctuations.
To circumvent this difficulty, one may consider the Atiyaim@er index theorem [5]

Qi =n, —n_=index 2), (1.4)

wheren,. is the number of zero modes of the massless Dirac opefatery, (d, +igA,) with +
chirality. Since? is anti-Hermitian and chirally symmetric, its nonzero @igedes must come
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in complex conjugate pairs (i.e7¢@ = iA @ implies Zy@ = —iA @, for A = A* # 0) with zero
chirality (/ d*x@"ys@ = 0). Thus one can obtain the identity

n,—n_= /d“x mtr(ys(2 +m) =1 (x,x)], (1.5)

by spectral decomposition, where the nonzero modes dragueuio zero chirality. In view of (1.4)
and (1.5), one can regandtr[ys(Z 4+ m)~1(x,x)] as topological charge density, to replgme) in
the measurement gf.

For lattice QCD, it is well-known that the overlap Dirac ogker [6, 7] in a topologically
non-trivial gauge background possesses exact zero modisdefinite chirality) satisfying the
Atiyah-Singer index theorem. Writing the massive overlagab operator as

_ m m Hw(—my)
D(m) = (mo-+3) + (mo- 3 ) 6ot
whereH,,(—nmp) is the standard Hermitian Wilson operator with negativesrasg (0 < mp < 2),
then the topological charge density can be defined as

pm(X) = mr[ys(De + m)5 ],

where (D +m)~1 is the valence quark propagator with quark massndD. is a chirally sym-
metric operator relating t®(0) by D = D(0)[1— D(0)/(2mg)]~* [8]. Here pm(x) is justified to
be topological charge density, since it can be shown Ihak,(x) = n. —n_, which is similar to
its counterpart in continuum, (1.5).

Now we can replac@(x) with pi(x), and use (1.3) to extragg for any topological sector.
However, on a finite lattice, it is contaminated by, m, and any states which can couple to
(p1(x)p1(0)). An alternative is to consider the correlator of the flavogket pseudoscalar meson
n'[4]

lim M (n'0a)n’ (%)) = —5 (1— g, G ) +0(e™P )+ 0(Q7%),(L6)
Q Q xXxQ  2x2Q

[X1—x2|>1

which is equal to the disconnected pggh(x1)p1(%2))q at large separation, but it tends to the
asymptotic value faster than the later since it only coupiethe states containing’. Then the
time correlation function ofy’ is fitted to A+ B(e™M! + e M(T-Y) to obtain the constank =
= — Xt — 2XQ , and from which to extrack; provided thatc;| < 2x?Q. This was how
we determlned the topological susceptibility in two-flalattice QCD with fixed topology [9, 10].

However, it was unclear to what extent the assumptiah< 2x?Q was satisfied. To elim-
inate this constraint, we compute the 4-point correlatongfas well as the 2-point correlator.
Theoretically, in a fixed topology, the former behaves as [4]

) 3X2 Q2 >2
| n'(x1)---n’ At [ x Oo(e M X=Xl 4 5 1.7
im ' )- ') = s (125 + s ) +0(e ™R 0@, (1)
From (1.6) and (1.7), one can solve fgrandc, (or equivalently, the parametgy
Q2
Xo= 5+ (- vki3), (18)

y

Cs _<\/k4—/3—k2) (1—Q—2>
2x¢Q Vka/3 -2k 7

- 0 (1.9)
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where—k; andk, are the asymptotic values of 2-point and 4-point corretattiarge separation.
It is interesting to note that if one neglects thierm in (1.6) and (1.7), they reduce to

2

Xt =~ %+Qk2, (1.10)
2

Xt =~ %+Q\/k4/3, (1.11)

which provide two independent estimatesyef In other words, ifly] < 1, then (1.8), (1.10) and
(1.11) all give compatible results fg. On the other hand, if (1.10) and (1.11) turn out to be
quite different from each other, théyl must be substantially larger than zero, and a more reliable
estimate ofy; could be given by (1.11).

For the (2+1)-flavor QCD, thg’ interpolating operator must take into account of the faat th
different flavors have different quark masses, namely,

rnq Nt 1 Nt
n'=—"7Y qrkds — Nt =Y M:qsysqs (1.12)
b N 21 T N 21

whereny is called the “topological'h’ operator for computing topological charge density correla
tors.

In this paper, we use 80 pairs of low-lying eigenmodes of trexlap operator to evaluate the
2-point and 4-point correlators gf;, and to extract their asympototic valuek, andks. Then we
use (1.8)-(1.9) to obtaiy; andy. Note thatc, is related to the leading anomalous contribution to
the n’ — n’ scattering amplitude in QCD, as well as the dependence ofabeum energy on the
vacuum angleé.
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Figure1: Low-mode saturation of (a) the 2-point functiGp, (t) (b) the 4-point functiorC,yy, (t)

2. Lattice Setup

Our simulations are carried out in the topologically-@ivsector (withQ; = 0) for (2+1)-
flavor QCD on a 18 x 48 lattice at a lattice spacing 0.11 fm (for details, see [11] and [12]). For
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the gluon part, the lwasaki action is usedBat 2.30, together with unphysical Wilson fermions
and associated twisted-mass ghosts [13]. The unphysicpbee of freedom generate a factor
defH2(—mg)/(H2(—mp) + u?)] in the partition function (we takeny = 1.6 and u = 0.2) that
suppresses the near-zero eigenvaluelgf—my) and thus makes the numerical operation with the
overlap operator substantially faster. Furthermore esthe exact zero eigenvalue is forbidden, the
global topological change is preserved during the moleayaamics evolution of the gauge field.

For ms = 0.100, we take five sea quark masgg) values: 0.015, 0.025, 0.035, 0.050, and
0.100 that cover the mass rangg/6-ms. After discarding 500 trajectories for thermalization,
we accumulate 2500 trajectories in total for each sea quassmIn the calculation of;, we
take one configuration every 5 trajectories, thus we have ca®igurations for eacim,. For
each configuration, 80 pairs of lowest-lying eigenmodeshefdverlap-Dirac operatdd(0) are
calculated using the implicitly restarted Lanczos aldonitand stored for the later use.

3. Results

In practice, we use 80 pairs of low-lying eigenmodes of therlap operator to evaluate the
2-point and 4-point time-correlation functions g

1 T
Cpp(t) = ﬁzg Nt (R, u+1)n7 (X1, u)) , lim = 3Cr;T() —ka,
Cype (1) = L < 4 3t)ns (X 200+ (X t)nt (X li 1C =
(0 = G 3. 5 (1 S0 R 0 20045 050 5o ) =

Thus it is crucial to check whether these 80 eigenmodes suffisaturat€,, (t) andCyp, (t) re-
spectively. In Fig. 1, we pldE,, (t) andCyy, (t) for my, = 0.015, versus the number of eigenmodes
(nev) 20, 40, 60, and 80 respectively. Obviou§ly (t) is well saturated with 80 eigenmodes for
the time range 15-t < 24 where it attains a plateau. Similar@, (t) is also well saturated for
the time range <t < 14 where it attains a plateau. The low-mode saturation alstsHor all five
sea quark masses.

In Fig. 2, we plot the values gf;a* (1.8) andy (1.9) versus the sea quark masga, together
with the values ofy; obtained from the 2-point function (1.10) and the 4-poimdion (1.11)
respectively. Evidently, the values gf from (1.8), (1.10), and (1.11) are in good agreement with
one another. For the smallest four quark masses, 0.015%,00235, and 0.050, the data points of
a*x; are well fitted by the ChPT formula [3]

>

_ , 3.1
X mpt+myt 4 mg? (3:1)

with a3 = 0.0021(1). In order to convert to that in theMS scheme, we calculate the renor-
malization factorzm(z GeV) using the non-perturbative renormalization techniqueugh the
RI/MOM scheme. Our result iEMS(2 GeV) = 0.800(10)(24) [14]. With a~1 = 183312) MeV
determined withrg = 0.49 fm [12], the value ok is transcribed to

sMS(2 GeV) = [2534)(6)MeV]?,
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Figure 2: Topological susceptibility;a* andy = c4/(2x2Q) versus sea quark massa for (2+1)-flavor
lattice QCD with fixed topological chargg = 0.
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Figure 3: The topological susceptibility; versusmy for lattice QCD with fixed topolog®; = 0.

which is in good agreement that extracted frgm= (Q?)/Q with Q; determined by the spectral
flow method for the 2+1 flavors QCD configurations generatethbyRBC and UKQCD Collab-
orations with domain-wall fermions [15]. Also, it is in go@djreement with our previous results
extracted fromy; in 2-flavor QCD [9, 10], and in the-regime from the low-lying eigenvalues
[16]. The errors represent a combined statistical eraot @nd ZW) and the systematic error
respectively.

At this point, it is instructive to ploy; versusmy, for 2-flavor QCD (data from [9, 10]), and
(2+1)-flavor QCD (this work), as shown in Fig. 3. Now we can skxarly how the topological
susceptibility changes with respect to the number of flavors

4. Concluding remark

In this paper, we have obtained the topological susceiilyf andc, in (2+1)-flavor QCD
from a lattice calculation of 2-point and 4-point correlatat a fixed global topological charge
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Q: = 0. The expected sea quark mass dependengefodm ChPT is clearly observed. Our result
asserts that the topologically non-trivial excitatione ar fact locally active in the QCD vacuum,
even when the global topological charge is zero. The inftionaof these topological excitations
is carried by the low-lying eigenmodes of the overlap Dirperator. We will use the values of
Xt we have determined to remove the artifacts due to the fixealdgp in a finite volume and to
obtain the physical results in tlfevacuum [17, 4].

Finally we note that our result of the ratjoy|/x; is substantially less than one in the chiral
limit, similar to its counterpart in quenched QCD [18, 19hig seems to suggest that the quantum
corrections would suppress the emergence of dilute irmteges in the full QCD vacuum.

Numerical simulations are performed on Hitachi SR11000I&n System Blue Gene Solu-
tion at High Energy Accelerator Research Organization (KEKder a support of its Large Scale
Simulation Program (No. 08-05), and also on IBM and HP chgsé¢ NCHC and NTU-CC in Tai-
wan. This work is supported in part by the Grant-in-Aid of thegpanese Ministry of Education
(Nos. 18340075, 18740167, 19540286, 19740160, 20025@XB9M05, 20340047, 20740156),
the National Science Council of Taiwan (Nos. NSC96-211202-020-MY3, NSC96-2112-M-
001-017-MY3, NSC97-2119-M-002-001), and NTU-CQSE (Na&0066-65, 97R0066-69).
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