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1. Introduction

The overlap fermion [1] has a great advantage that it rethmexact chiral symmetry on the
lattice [2]. This is particularly convenient in a computetiof hadron masses and matrix elements,
since an artificial operator mixing is forbidden and the lesan be analyzed with a continuum
chiral perturbation theory formulae. On the other hand,abee of its high numerical cost, a
systematic study with dynamical simulation is a challegdiask with the present computational
power.

We are performing large-scale simulations with 2 and 2+Dbftawef dynamical overlap fermions
[3, 4]. As for theN; = 2 simulation on a 15x 32 lattice, the generation of configurations has been
finished [5], and various physics measurements are donepodmess [3]. In this paper, we report
the status of the 2+1-flavor simulation on & 1648 lattice witha~ 0.11 fm and of improvement
of algorithms towards simulations on larger lattices.

The next section describes our simulation setup and presatus. In Section 3 we explain
our attempt to accelerate the simulation by improving tHeescand HMC algorithms. The last
section gives summary.

2. Simulation setup and status

The overlap operator with a quark mamss written as

D(m) = (mo+ ) + (mo— ) yesignlHw(—mo)) (2.1)

whereHy = yDw is the hermitian Wilson-Dirac operator with a large negatmassrg, which
is set to 1.6 throughout this work. To compute the sign fumcof Hy, we adopt the Zolotarev
rational approximation [6, 7],

\/7 )\mm

wherehyw = Hw/Amin With Amin the eigenvalue having the smallest absolute value. Pagasugt
¢, b are determined depending on the condition numbetef The formula is valid in a region
|A| € [Amin, Amax, @nd its error scales as €xpAminN). To keep sufficient precision while keeping
N not so large, We calculate low-lying eigenvaluedHgf of |A| < Ainrs SO as to determine the sign
function of these modes explicitly and project them out fridga. ThenAiys replacesAmin in the
above formula, leading to

"|' 2N (2-2)

Z hW+C2| 1

Nev
sign(Hw) = z Sign(A;)v; ®v + sign(Hw )Py (2.3)

whereRy = 1— z'l\'evlv, , andNev the number of modes witfAj| < Ais. The approximation
formula (2.2) is applied to the second term of Eq. (2.3). Is thork, we adop# s = 0.045 and
N = 10, which lead to an accuracy [sigreHy — 1| ~ 10~ (7-8),
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For the gauge action, we use the renormalization group imegrdlwasaki) action withs =
2.3, as well as the topology fixing term. The latter is implenaenivith two copies extra Wilson
fermions and a twisted mass ghost as [8, 9, 10]

det<i> = /‘QXTgxexp(—SE) (2.4)
HZ + u? ’ '
S = x" | (Dw+iysk) (ONDw) " Ow +ivsk)'| x. (2.5)

SinceA = 0 is prohibited by the fermion determinant (2.4), the topatal charge is fixed during
the molecular-dynamics updates. This considerably deesshie simulation cost, since the overlap
operator has a discontinuity at= 0, and when it is hit during the molecular-dynamics updat on
needs to treat the discontinuity using the so-called réflefrefraction prescription [11], which
requires additional inversions of the overlap operator. s&kthe twisted ghost mags= 0.2
throughout this work.

Dynamical simulations are performed with the hybrid Mon#|@ algorithm. In order to im-
prove the performance of HMC, we adopt the mass preconditioii2] together with the multi-
time step procedure [13]. The molecular-dynamics stepssie set a1 pry) > ATpry) >
A1) = At(g), Where subscripts PF2, PF1, G, and E respectively denotpréwenditioned dy-
namical fermions, the preconditioners, the gauge field,thadextra fermion term. In this work,
ATpry) /AT(pr1y andAT(pry) /AT ) are set to 4-6.

The one-flavor part is implemented by taking one of the cityrakctors [14], making use of
the fact thaH (m)2 commutes withys, thus

H?=P,H?P, + P H?P.=Q, +Q_, detH?=detQ, -detQ_. (2.6)

Except for the trivial contribution from the zero-modese ttheterminant of one chirality sector
gives the contribution of one flavor. Thus the pseudofernaiciion S = (nggler, whereo can
either be+ or —, represents the one-flavor of dynamical fermion.

TheNs = 2+ 1 simulations are performed on®6 48 lattices in the&) = 0 topological charge
sector. We use 5 values o4 covering (1/6—1)n§hysfor each of 2 strange quark masses—= 0.08
and 0.10, around the physical strange quark m@gs. At each set of parametefsn,q, ms),
2500 trajectories of a length 1 are generated after 300ctmjes for thermalization. Present
performance ofm,q = 0.025 is around 2 hours for one trajectory on one rack of BlueeBen

The lattice scale is set by the hadronic radigihich is defined througfr2(aV (r)/9r)]=r, =
1.65, by setting the physical valug = 0.49 fm. The static quark potenti®l(r) is calculated with
the standard procedure. Figure 1 shows the result of thedagpacing together with the result of
Nt = 2 simulation. The strange quark mass effect is invisibly Isr#alinear extrapolation gives
a(myg = 0) = 0.10757) fm for ms = 0.100 anda(myg = 0) = 0.10758) fm for ms = 0.080.

3. Improvement of the algorithm

Improvement of the solver algorithm may significantly reeldlbe simulation cost. We have
tested two algorithms; the nested CG (4DCG) method [15] aedstdimensional CG (5DCG)
method [16], and adopt the latter in HMC in the present sitinia.
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Figure 1: The lattice scal@(rg) set byro = 0.49fm.

The 5-dimensional CG solver is based on the Schur deconogli] and implemented with
a 5-dimensional block matrix (example with tNe= 2 case),

Hy — @ 0
~V& —Hw VP2 AlB
Ms = Hw —/@| O :<as>. (3.1)
—V/& —Hw| P
0 P, 0 /P1 R+ poH

SinceMs can be decomposed as

1 0\/A0)\ /1A 1B
M5:<CA-1 1)(05) (o 1 ) (3.2)

whereS= D — CA™1B, one can solve a 4D linear equatigi, = x4 by solving a 5D equation

) (O
w(2)-(2) 6

Setting the parametelR, pg, pi andq (i = 1,...,N) in Eq. (3.1) appropriately, the 5D solver
can be used to invert the overlap operator approximated by(Zg). Applying the even-odd
preconditioning, one needs to solve a reduced linear aqyatl — MgdMeoMoi-Moe) We = X&
where even/odd blocks M is denoted bMee, Meo, €tc. The inversiondlst andM; . are easily
calculated by forward/backward substitutions.

In Ny =2+1 simulation, we implement the low-mode projection fag 8D solver [17]. The
lower-right corner of Eq. 3.1 is replaced by

NeV
R(L—Ru)¥s(L— Ru) + Pobw + (mo -+ g) S sign(Aj)v; oV, (3.4)
j=1

While this makes the inversion dflee and My, complicated, it can be implemented with small
numerical cost, because the subspace of the matrix is spagixg, ysXe, Vie, Y5Vje (j =1, ..., Ney).
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We compare the 4D and 5D solvers on & 648 lattice, and find that the latter is faster by
a factor of 3—4 in the whole region of quark mass used in thiskw®hus we mainly use the 5D
solver in HMC.

Besides the acceleration of the overlap solver, severaleetion techniques can be applied
to the HMC, such as the chronological estimator [18], andrawgd integration scheme [19]. In
the following, we apply the first technique to the 5D overlajver.

The chronological estimator is a technique to accelerateHRIC update by estimating a
solution of Dirac operator by making use of previous sohgiat preceding MD steps [18]. Let us
consider a linear equatidd[U]"D[U]y@ = b, whereU andb depend on the simulation tinte An
approximate solutioy(t) may be constructed from previous solutions as

Npy
Yt) = z CkY(t — KAL). (3.5
K=1
Two choices of; are tested in the following.

(1) Polynomial extrapolation: Bl-th order polynomial extrapolation is obtained by choostimg
coefficients as

Npv!
_ (k-1 pv
An advantage of this method is its simplicity; one needs ribteshal multiplication of Dirac

operator.
(2) Minimum residual extrapolation (MRE)j s determined so as to minimize
W[y =y¢'D'DY-b'y—y'o (3.7)
in the subspace spanned {yt — kAt).

To apply to the 5D solver algorithm for the overlap operataiye way is to store the previous
5D solutions. This is memory-consuming and not feasiblesfiorulations with large lattices. In-
stead, one can reconstruct the 5D solution when the comdsmp4D solution is in hand. Eq. (3.7)
or (3.7) are applied to the latter. Suppose that one has t®olyy, of a 4D equationD i, = Xa.

Eqg. (3.3) is rewritten as
A0\ [ o+A 1By, 0
= ) 3.8
(02 (%) (%) e

Thus, wheny is already knowng is given by solvingAg = —Bs. More explicitly,

0N
|, g (VE) VP, 3.9
which is easily calculated simultaneously by using the ishiltt CG solver [20].

Figure 2 shows the convergence of the 5D solver with initis@gp of solution provided by
the chronological estimator. We use a single configuratibthe 16 x 48 lattice withm,g =
0.015 (M = 0.2) andms = 0.080 (M = 0.4). Herem' denotes the mass of the preconditioner.
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Figure2: Convergence of the 5D solver with the chronological estiman single configuration on $6 48
lattice withmyg = 0.015 (M = 0.2) andms = 0.4 (M = 0.4). From top to bottom, the symbols represent
numbers of iterations to achiey/|b| < 108 for myg = 0.015,ms = 0.08, M’ = 0.2 and =0.4, respectively.

At most 5 previous solutions are used. From top to bottom stmbols represent numbers of
iterations to achievi|/|b| < 1078 for myg = 0.015,ms = 0.08,m’ = 0.2 and 04, respectively. The
chronological estimator indeed improve the convergengeifstantly, with both the polynomial
extrapolation and MRE. Rather fluctuating behavior of MREy/1ha explained by the fact that we
did not orthogonalize the previous vectors before applymgimization of Eq. (3.7). When two
extrapolation schemes give the same level of improvembatpblynomial extrapolation is more
desirable, since MRE needs additional multiplication ofeM@rlap operator ofI4,,.

When one applies the chronological estimator in HMC, thertice must be tuned so as to
keep the reversibility at a sufficient level. Therefore thégn the performance of HMC must be
carefully investigated. Such study is in progress.

Besides the chronological estimator, the constructionnod@proximate 5D solution (3.9) is
exploited to construct an adaptive 5D solver. At an earlgestaf the CG iteration, one does not
require the full precision to the sign function By,. One can change the value Bfoy as the
iteration of the solver algorithm proceeds. When one chaihyg,, an approximate solution at
new Npoly is constructed from the latest 4D approximate solution. \Aleettested this adaptive 5D
solver algorithm on our lattices, and found an improvemématbout 15% in computer time.

4. Summary

We are performing a 2+1-flavor dynamical overlap simulatiora 16 x 48 lattice witha ~
0.11 fm with Q = 0 topological charge sector. Configuration generation fegs Binished, and
physics measurements are in progress [21]. To perform atrook with larger lattices, further
improvement of algorithms is strongly desired. In the pnésemulation the 5D solver with low-
mode projection ofHyy is adopted as the solver algorithm. We have performed exjglor study
of the chronological estimator applied to the 5D solver, lavipractical application needs careful
examination of the reversibility.

Numerical simulations are performed on Hitachi SR11000 &M System Blue Gene So-
lution at High Energy Accelerator Research OrganizatiokKIK under a support of its Large
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