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Local chiral fermions Michael Creutz

1. Introduction

I describe a strictly local fermion Dirac operatorD(A) with an exact chiral symmetry mani-
fested in anti-commutation withγ5, i.e. γ5D = −Dγ5. By strictly local I mean that only nearest
neighbor terms appear in the fermion action. The operator describes two fermion flavors, the min-
imum required for chiral symmetry to exist. I develop this action as a linear combination of two
“naive” fermion actions, following a line of reasoning similar to that presented by Borici [1].

The theory is not symmetric under the full hyper-cubic group, but the subgroup thereof that
preserves one fixed direction up to a sign. These symmetries include transformations of both even
and odd parity. On renormalization, interactions can introduce a lattice anisotropy at finite cutoff.

2. Doubling and chiral symmetry

Spontaneously broken chiral symmetry is fundamental to ourunderstanding of low energy
hadronic physics. Pions are elegantly described as quantummechanical waves propagating through
a background quark condensate. In addition, chiral symmetry provides powerful tools enabling
extrapolations to the physical quark masses from the heavier values currently practical in lattice
gauge simulations.

These issues are deeply entangled with quantum mechanical anomalies that eliminate one
symmetry of the classical Lagrangian. WithN f flavors of quark, the naive axialU(N f ) is reduced
to SU(N f ). With only one flavor, all chiral symmetry is removed; so, multiple flavors are necessary
for chiral symmetry to be relevant. Nielsen and Ninomiya [2]have given a formal topological
argument that any lattice action with chiral symmetry must describe at least two flavors.

If one ignores the anomaly and writes a simple lattice actionthat is chirally symmetric, some-
thing must go wrong. The usual result is that the fermion fielddescribes multiple species, and
the extra species cancel the anomalies. The most naive discretization, which will play an essential
role below, involves 16 species in four dimensions. Staggered fermions divide out an exactSU(4)

symmetry of the naive formulation to reduce the multiplicity to four [3]. The Wilson fermion [4]
approach successfully removes all doublers at the expense of breaking all chiral symmetries. El-
egant newer approaches based on perfect actions [5], domainwalls in five dimensions [6], or the
overlap operator [7] do maintain much of the desired chiral symmetry with arbitraryN f , but involve
computationally expensive non-local actions. Also, theseapproaches tend to obscure the anomaly;
for example, with the overlap one introduces a gauge field dependent matrix̂γ5, the trace of which
gives the winding number of a given gauge configuration.

The Nielsen-Ninomiya theorem requires any chirally symmetric lattice action to describe at
least two species. Actions which satisfy the minimal doubling of just two have been known for
some time [8, 9], and have recently stimulated new interest [1, 10, 11, 12]. There are a variety of
compelling reasons to revisit these actions. First is the failure of the rooting procedure popularly
used to reduce the doubling of staggered fermions [13]. Second is the lack of an exact chiral
symmetry for Wilson fermions, complicating extrapolations to physical fermion masses. And third
is the severe computational demands of the domain-wall and overlap approaches.
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Figure 1: Representing momentum space as a product of toroids, a massless Dirac equation can be obtained
from naive fermions by expanding about any point where the components of momentum are either 0 orπ .
This gives rise to the 16 doublers of the approach.

Here I construct a minimally doubled fermion action closelyfollowing Borici’s formalism [1].
I use a linear combination of two unitarily equivalent naivefermion actions. This combination will
be crafted so that only two of the original 16 doublers for each action survive.

3. Naive fermions

The so called “naive fermion” approach plays a crucial role in the following; so, I begin by
reviewing this action. Work with a conventional hyper-cubic lattice with gauge fields implemented
as group elements on the links. The details of the gauge part of the action play no role here. When a
fermion hops in a forward directionµ between neighboring sites, it picks up a factor ofγµU . Here
γµ is the usual Hermitean Dirac matrix whileU represents the gauge field on the corresponding
link. For the reverse, or backward, hop on the same link, the contribution is−γµU†. The minus
sign makes the fermion operator an anti-Hermitean matrix when viewed as a matrix in the direct
product of the site space with the internal symmetry and spinor spaces. I work here with the
convention of a unit hopping parameter; for the massless case any other hopping parameter can be
scaled away with a redefinition of the fields. I also work in lattice units so that all site coordinates
are integers and the lattice spacing does not appear explicitly.

As is well known, this action describes the physics of 16 fermion species, frequently referred
to as doublers. The Dirac operator,D, anti-commutes withγ5. This represents an exact chiral
symmetry. Because the doublers use different effective gamma matrices, half of them rotate in
each direction under a chiral rotation. Thus this is a non-singlet chiral symmetry.

In the free field limit where all the link matrices are the identity, this theory is easily solved
in momentum space. The Dirac operator factors into independent pieces for each momentump,
taking the form

D(p) = 2i∑
µ

γµ sin(pµ). (3.1)

Expanding about small momentum gives the usual Dirac behavior D(p) ≃ 2i∑µ γµ pµ . The dou-
blers appear on expanding not about zero momentum but aroundpoints where some components of
p are approximatelyπ. Thus, in addition to the excitations aroundpµ = 0, there are 15 other points
in momentum space where the action is small. Visualizing momentum space as a direct product of
two toroids, the zeros occur as sketched in Fig. (1).
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Figure 2: The points in momentum space furthest from those giving the Dirac equation are located at
pµ = ±π/2. Our second naive fermion action will have its zeros at these points.

4. A unitary transformation

I now do a transformation on the above action to generate a superficially different but physi-
cally equivalent naive fermion action. Begin by considering maximally distant momenta from the
zeros ofD. There are 16 such points, occurring whenever the components of the momentum satisfy
pµ = ±π/2. These points are sketched in Fig. (2) for thex,y sub-torus. Arbitrarily select one of
these points; here I considerpµ = +π/2 for all µ . Here the original action becomes

D(pµ = π/2) = 2i∑
µ

γµ = 4iΓ (4.1)

where I define the quantity

Γ ≡
1
2
(γ1 + γ2 + γ3 + γ4). (4.2)

This is a unitary, Hermitean, and traceless four by four matrix in spinor space.
Now consider a unitary transformation on the original fields

ψ ′ = e−iπ(x1+x2+x3+x4)/2 Γ ψ (4.3)

ψ ′ = eiπ(x1+x2+x3+x4)/2 ψ Γ. (4.4)

Here thexµ are the integer coordinates of the lattice. The phases move the zeros in momentum
space frompµ = 0,π to the maximally distant pointspµ = ±π/2. The factors ofΓ modify the
gamma matrices for the new action to

γ ′µ = ΓγµΓ. (4.5)

Note that I can constructΓ either from the originalγµ or the newγ ′µ

Γ =
1
2
(γ1 + γ2+ γ3 + γ4) =

1
2
(γ ′1 + γ ′2 + γ ′3+ γ ′4) = Γ′. (4.6)

In the free field limit, momentum space again diagonalizes the new action, call itD,

D(p) = 2i∑
µ

γ ′µ sin(π/2− pµ). (4.7)

Of course since all I have done is a unitary transformation, the Dirac operatorsD andD are physi-
cally equivalent. They also satisfy a complementarity manifested in

D(pµ = π/2) = D(pµ = 0) = 4iΓ. (4.8)

This property is crucial to the following construction.
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Figure 3: The combination of termsD = D + D−4iΓ leaves only two Fermi points in momentum space.
This is the minimal number consistent with the Nielsen-Ninomiya theorem [2].

5. The minimally doubled action

I now construct the final action from a linear combination of these two equivalent theories

D = D + D−4iΓ. (5.1)

To see how this works, consider the free theory limit in momentum space

D(p) = 2i∑
µ

(

γµ sin(pµ)+ γ ′µ sin(π/2− pµ )
)

−4iΓ. (5.2)

Going to the Fermi point of the original theory atpµ ∼ 0, then the 4iΓ term cancelsD. On the
other hand, at the Fermi point ofD occurring atpµ ∼ π/2, the 4iΓ term cancelsD. The remarkable
feature of this combination is that only these two zeros ofD(p) remain. I give a more detailed
proof in Appendix A, but basically at the other zeros ofD, D−4iΓ is large and at the other zeros
of D, D−4iΓ is large. Fig. (3) shows the two remaining Fermi points.

Note that each term in Eq. (5.1) anti-commutes withγ5, maintaining the exact chiral symmetry
of the naive action. Thus a finite chiral rotation gives

eiθ γ5Deiθ γ5 = D . (5.3)

The construction uses different gamma matrices for the two species. A particular consequence is
γ ′5 = Γγ5Γ = −γ5. Under the chiral rotation of Eq. (5.3), the two species behave oppositely. The
symmetry is of a non-singlet nature, as expected.

6. Space time symmetries

The above construction utilizes the matrixΓ = 1
2 ∑µ γµ . Had I selected another of the max-

imally distant points from the zeros of the initial fermion operator, then this relation would be
modified with minus signs for some directions. This would give an equivalent theory, but any such
choice still involves picking a particular diagonal axis ofthe fundamental hyper-cubic lattice as
special. Here I have chosen the positive major diagonal. Forcomparison, in Refs. [8, 9] the special
direction is not a diagonal but ratherx4, as discussed further in Appendix B.

Having picked a specific diagonal of the fundamental hypercubes, the action is not symmetric
under the full hyper-cubic group, but only the subgroup thatleaves this direction invariant. This
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subgroup includesZ3 rotations that cycle any three positive axes. For example, Imight want to
cyclicly permute thex1,x2,x3 axes. To get the gamma matrices to transform appropriately under
such rotations, introduce the matrix (in spinor space)

V = exp

(

iπ
3
√

3
(σ12+ σ23+ σ31)

)

. (6.1)

Here I define[γµ ,γν ] = 2iσµν . The combinationV †γµV cyclicly permutes the first three gamma
matrices. Since[V,Γ] = 0, this matrix, along with a corresponding rotation of the gauge fields,
realizes a symmetry of the action. Note thatV 3 = −1, indicating that a rotation by an angle of 2π
gives a minus sign, as expected for fermions. Combining suchrotations using other axes generates
the 12 element tetrahedral subgroup of the hyper-cubic group.

The above rotations generate positive parity permutationsof the axes. Introducing negative
parity permutations increases the subgroup to 24 elements.For example, the matrix

V =
1

2
√

2
(1+ iσ15)(1+ iσ21)(1+ iσ52) (6.2)

generates the fermionic part of a rotation that exchanges the x1 andx2 axes. This transformation
flips the sign ofγ5, i.e.V †γ5V = −γ5, emphasizing that it is a negative parity transformation.

In this formalism the natural direction to represent time isthe main diagonale1 + e2+ e3+ e4.
The combination of time reversal and parity can then be chosen to flip the sign of all axes. A
unitarity transformation similar to that relatingD and D restores the action to its original form,
increasing the symmetry group to 48 elements.

Note that charge conjugation symmetry is trivial in this formulation, just being particle hole
symmetry. Both the operatorsD and the Hermitean combinationγ5D have their eigenvalues in
opposite sign pairs.

Because of the special treatment of the main diagonal, the effects of interactions can distort
lengths along this direction. At each of the Fermi points, this distortion is associated with the di-
mension five continuum operatoriψΓ∇2ψ . Interactions at finite lattice spacing can result in the
gluons and fermions not having the same speed of light. This can be corrected with a renormal-
ization of theψΓψ term in the action, as emphasized in Ref. [11]. Nevertheless, the zeros are
stable under this distortion because they involve a topologically non-trivial mapping of surfaces of
constant action [2, 10].

Appendix A: Proof that there are only two zeros of D(p)

From the definition ofΓ it is elementary to show thatγ ′µ = Γ− γµ and the properties TrΓγµ =

TrΓγ ′µ = 2. Using trivial trigonometric identities one can deduce

Tr (γµ − γν)D(p) ∼ sin(pµ −π/4)−sin(pν −π/4). (6.3)

This implies that at any zero cos(pµ −π/4) = ±cos(pν −π/4). But a zero also requires

Tr ΓD(p) = 0 ⇒ ∑
µ

cos(pµ −π/4) = 2
√

2 > 2. (6.4)

Thus all these cosines must be positive. Therefore all components ofpµ are equal and either 0 or
π/2, the two Fermi points of interest.
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Appendix B: Comparison with actions from Karsten and Wilczek

Two other minimally doubled chiral fermion actions have been presented in Refs. [8, 9]. These
actions are in fact equivalent to each other under a unitarity transformationψ → e−iπx4/2ψ . For the
free case, that action can be written

D =
4

∑
µ=1

γµ sin(pµ)+ γ4

3

∑
i=1

(1−cos(pi)). (6.5)

The last term removes all doublers from the naive action except those at~p = 0 andp4 = 0,π.
The main difference from the action presented here is thatx4 is now chosen as the special

direction. The on site term is proportional toγ4 instead ofΓ. As before the second species with
momentum aroundp4 = π uses different effective gamma matrices,~γ ′ =~γ andγ ′4 = −γ4. As with
the action from the main text, this givesγ ′5 = −γ5. Again the chiral symmetry is flavored. The
symmetry of this system is the subgroup of the hyper-cubic group that preserves the fourth axis up
to a sign.
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