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1. Introduction

Simulations in theε regime are complementary to standard large volume simulations. They
allow to extract low energy constants of the chiral Lagrangian, in some cases with less contamina-
tions from chiral logs coming from higher order corrections. For a long time it has been thought
that simulations in theε regime are restricted to chirally invariant lattice formulations. In ref. [1] we
have argued that actually this is not the case, and that simulations in theε regime can be performed
also with not chiral invariant lattice actions, as Wilson-like fermions.

In particular in [1] we suggested that a combination of algorithmic and theoretical understand-
ing of Wilson twisted mass makes possible to think and actually perform simulations in theε
regime with Wilson twisted mass fermions.

Recently it has been shown that with suitable and related algorithmic ideas [2] it possible to
reach or get close to theε regime also with improved Wilson fermions. At this lattice conference
further results in this directions have been presented [3].

In this proceeding we extend to a second lattice spacing and to NLO the analysis performed
in [1]. Our setup is aL3×T Euclidean lattice with spacinga. The lattice action

S[χ ,χ ,U ] = SG[U ]+SF [χ ,χ ,U ], (1.1)

is a combination the so called tree-level improved Symanzikgauge action [4]

SG[U ] =
β
3 ∑

x

{

b0 ∑
µ<ν

Re Tr
[1−P(1×1)(x;µ ,ν)

]

+b1 ∑
µ 6=ν

Re Tr
[1−P(2×1)(x;µ ,ν)

]

}

, (1.2)

with
b0 = 1−8b1, b1 = −

1
12

, (1.3)

and Wilson twisted mass [5]

SF[χ ,χ ,U ] = a4∑
x

χ(x)
[

DW + iµqγ5τ3
]

χ(x), (1.4)

where
DW =

1
2
{γµ (∇µ + ∇∗

µ)−a∇∗
µ∇µ}+m0. (1.5)

The basic idea of [1] is that sampling all topological sectors in the ensemble generation, it
is not needed to have an unambiguous definition of topology atfinite lattice spacing. To achieve
this goal it was suggested [1] to use a PHMC algorithm [6] treating the low modes exactly and
reweighting the observables. This could allow to perform simulations at very low quark masses
without encountering instabilities or metastabilities.

2. ε expansion

Lowering the quark mass at finite lattice spacing with Wilson-like fermions requires a detailed
understanding of the interplay between genuine chiral behaviour induced by the ’pion’ dynamics
and the one generated by cutoff effects. A review on the phasediagram and cutoff effects with
Wilson twisted mass (Wtm) can be found in ref. [7]. In theε regime this is equivalent to say that
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it is necessary to understand the coupling of the zero modes with the relevant operators describing
the effect of the lattice artifacts. The actual values of thelattice spacing, the physical volume and
the quark mass determine the appropriate power counting that ought to be used to perform com-
putations using chiral effective theories. In the continuum the exact integration over the constant
zero modes can be achieved in the chiral effective theory modifying the p regime power counting,
resulting in the so calledε expansion where the would-be pion mass is small compared to the linear
size of the box

1
T

= O(ε),
1
L

= O(ε), Mπ = O(ε2). (2.1)

As a result of the exact integration the order parameter, or the equivalent ratioR= 〈q̄q〉
B0F2 vanishes

in the chiral limit at fixed finite volume [8], obtaining restoration of chiral symmetry. One possible
way to include the effects of the lattice artifacts in this analysis is to include with an appropriate
power counting the lattice spacing. Here we modify the standard power counting in the following
way [9]

M = O(ε4),
1
L

= O(ε),
1
T

= O(ε) a2 = O(ε4), (2.2)

whereM indicates generically a quark mass. The partition functionat leading order reads

Z =

∫

D [U0]e
c1V

2 Tr[U0+U†
0 ]−

c2V
4 Tr[U0+U†

0 ]
2
+

c3V
2 Tr[iτ3(U†

0−U0)], (2.3)

where the scaling variables are

z1 = c1V = B0F
2m′V, z2 = c2V = −

F2w′Va2

4
, z3 = c3V = B0F2µRV. (2.4)

To argue that this a proper power counting for actual numerical simulations we list here some
values

M ≃ 5MeV, a≃ 0.1fm, L ≃ 1.5fm (2.5)

F ≃ 90MeV, B0 ≃ 5.5GeV, |w′| ≃ (570MeV)4. (2.6)

Using these values to estimate the relevant scaling variables in this regime one obtains

MF2B0V ≃ 0.75, a2F2|w′|V ≃ 0.75,
MB0

a2|w′|
≃ 1, (2.7)

which seems to indicate that this is an appropriate power counting.1 The chiral condensate can be
computed in the standard way

R=
1
Nf

∂
∂z3

logZ , z1 = 0, (2.8)

and fig. 1 shows the quark mass (left plot) and lattice spacing(right plot) dependence of the chiral
condensate. We can certainly conclude that the dependence on the quark mass is, as expected,
smooth, and the cutoff effects are under control. Extensionof this computation to NLO including
standard two-point functions is currently in progress [9].The power counting introduced is general
and valid also for plain Wilson fermions (z3 = 0). The same power counting could be used to
develop an expansion with staggered fermions and to check the chiral properties of the spectrum in
the presence of roots of the staggered determinant.

1If the lattice spacing is much smaller a different power counting ought to be used where the lattice artifacts only
appear at NNLO.
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Figure 1: Quark mass (left plot) and lattice spacing (right plot) dependence for the single flavour chiral
condensate normalized with its LO value in the continuum andinfinite volume.

β κ L/a T/a aµq

4.05 0.157010 20 40 0.00039

Ntraj Nana τint(P) τint(mPCAC)

2500 421 ∼ 0.5 ∼ 0.5

r0/a a[fm] L[fm] amPCAC

6.61(3) 0.0656(11) 1.31 0.00045(12)

Table 1: Summary of the simulation setup and of the basic ensemble parameters.

3. Numerical results

Details on the algorithm used to generate the gauge ensemblecan be found in ref. [1]. In this
proceeding we extend the results obtained in [1] to a second lattice spacing with a NLO analysis.
The inversions for the quark propagator have been performedwith a stochasticZ2 × Z2 source
located randomly along euclidean time. Table 3 summarizes the simulation setup. In the left plot
of fig. 2 we show in the first strip the plaquette MC history and its distribution. In the second strip
we show the MC history and distribution of the lowest eigenvalue, compared with the value of
the infrared cutoff (horizontal red line) provided by the twisted mass. In the third strip we show
the MC history of the reweighting factor and its distribution. One crucial parameter for stability
issues and for controlling discretization errors is the PCAC mass. In the right plot of fig. 2 we show
the MC history and the distribution of the PCAC mass atx0 = T/4, together with the euclidean
time dependence of the PCAC mass. It is remarkable the almostabsence of boundary O(a) cutoff
effects. The analysis gives with the corresponding Z factors [10]

amPCAC = 0.00045(12) ⇒ aMMS
R (2GeV) = 0.0012(2), (3.1)

where
MMS

R (2GeV) =
1
ZP

M M =
√

(ZAmPCAC)
2 + µ2

q . (3.2)

We are clearly not at full twist. It is important to remark that this is not so relevant in the regime
where chiral symmetry is restored. Automatic O(a) improvement [11] actually holds in a finite
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Figure 2: Left plot: MC histories and distributions of the plaquette (first strip), smallest eigenvalue (second
strip) and reweighting factor (third strip). The smallest eigenvalue is compared with the infrared cutoff
provided by the twisted mass (horizontal line).Right plot: MC history and distributionx0 = T/4 (first strip)
together with the euclidean time dependence of the PCAC mass(second strip).

volume and with suitable boundary conditions also for massless Wilson fermions [12]. This is
somehow related to the fact that in the region where chiral symmetry is restored only O(amPCAC)
cutoff effects are expected, i.e. very small. On the other side if the mass is of of ordera2 in general
the the O(a2) cutoff effects could become the dominant ones.

3.1 Low energy constants

The values of the low energy constants (LECs) can be extracted by comparing the results of
the numerical simulations for the euclidean time dependence of basic two-point functions, with the
prediction ofχPT [13, 14]. In this proceeding we consider the correlation function

CP(x0) =
a3

L3 ∑
x

CP(x,x0) δ abCP(x,x0) = 〈Pa(x,x0)P
b(0,0)〉 (3.3)

between charged pseudoscalar currents

Pa(x) = χ(x)iγ5
τa

2
χ(x). (3.4)

The euclidean time dependence of the correlation function in χPT is given by

CP(x0) = aP+
T
L3bP

[

y2

2
−

1
24

]

+ . . . y =
x0

T
−

1
2
, (3.5)

where we have defined the following variables

aP =
B2

0F4ρ2

8
G1(u), bP = F2B2

0

[

1−
1
8

G1(u)

]

. (3.6)

Details on the definitions ofρ , u andg1 can be found in [13, 14]. We can thus fit the results from
the numerical simulations with the following fit formulæ

CP(x0) = A0 +A2y
2 ⇒ aP = A0 +

A2

12
bP = A2

2L3

T
. (3.7)
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Figure 3: Left plot: Euclidean time dependence ofCP(x0) together with the result of the fit. The solid line
indicates the fit range, while the dashed line indicates the same curve outside the fit range.Right plot: fit
results for chiral condensate (first strip) and decay constant (second strip) as a function of the number of
points included in the fit around the middle pointT/2. The circles indicate the actual values quoted in the
text and the dashed lines indicate the range of values used todetermine the systematic error.

In the left plot of fig. 3 we show the euclidean time dependenceof CP(x0) together with the result
of the fit (red curve). The line is solid along the fit range and it becomes dashed where the points
are not included in the fit. The results of the analysis are

a3L3A0 = (5.94(36)) ·10−3, a3L3A2 = (4.81(30)) ·10−2 (3.8)

where the errors have been computed with a nested Jackknife/bootstrap procedure. It it is important
to check the stability of the fit results against the number ofdataNdata included in the fit. This is
especially important if we want to make sure that the parabolic time dependence is a real feature
coming from simulating in theε regime and not just accidental, i.e. coming from the standard cosh
dependence which can reproduce a fake parabolic dependencearoundT/2.

In the right plot of fig. 3 we show the stability of the effective chiral condensate and decay
constant as a function of the number of data points (i.e time slices) around the middle point included
in the fits. While the chiral condensate shows a remarkable stable result including more point in
the fit, the decays constant shows a somehow not completely flat dependence on the number of
data points included in the fit. While this is not worrisome, it might be an indication of a physical
volume not sufficiently large to suppress higher order corrections. A perfectly well defined way
to proceed would is to include in the systematic error forF the spread of its value in the region
between the 2 dashed lines. The preliminary result of this analysis is

r0Σ1/3 = 0.620(8), r0F = 0.220(8)(10) (3.9)

which compares rather well with results obtained in theε regime using improved Wilson fermions [15].

4. Conclusions and outlooks

We are establishing the basic knowledge to simulate with Wilson-like fermions in theε regime.
To do this we have introduced a power counting to study theε expansion with Wilson-like fermions.
The LO computation for the chiral condensate confirms the absence of any phase transitions, and
NLO extension to the condensate and other observables is currently ongoing.
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Numerical simulations in theε regime with Wtm are feasible using a PHMC with exact
reweighting. This particular choice allows to lower significantly the quark mass. The extraction of
LECs likeΣ andF then becomes feasible. Moreover the NLOε expansion is not contaminated by
chiral logs, which could be a benefit to reduce the systematicerrors.

Computations in this extreme region with Wilson-like fermions require a detail understanding
of the usual systematics: discretization errors, quark mass and volume dependence.

We remark that it might be advantageous to combinep andε regime simulations both as a tool
to attack 2+1(+1) simulations, and to further constrain the values of the LECs.
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