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We present a gauge-invariant and non-perturbative construction of the Glashow-Weinberg-Salam
model on the lattice, based on the lattice Dirac operator satisfying the Ginsparg-Wilson relation.
Our construction covers all SU(2) topological sectors with vanishing U(1) magnetic flux and
would be usable for a description of the baryon number non-conservation. In infinite volume, it
provides a gauge-invariant regularization of the electroweak theory to all orders of perturbation
theory. First we formulate the reconstruction theorem which asserts that if there exists a set of
local currents satisfying cetain properties, it is possible to reconstruct the fermion measure which
depends smoothly on the gauge fields and fulfills the fundamental requirements such as locality,
gauge-invariance and lattice symmetries. Then we give a closed formula of the local currents
required for the reconstruction theorem.

The XXVI International Symposium on Lattice Field Theory
July 14-19 2008
Williamsburg, Virginia, USA

∗Present address: Theoretical Physics Laboratory, RIKEN, Wako 2-1, Saitama 351-0198, Japan
†Present E-mail address: kadoh@riken.jp
‡Speaker.

c⃝ Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:kikukawa@hep1.c.u-tokyo.ac.jp


P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
8
)
0
8
6

Glashow-Weinberg-Salam model on the lattice with exact gauge invarinace Yoshio Kikukawa

1. The Glashow-Weinberg-Salam model on the lattice

We describe a construction of the Glashow-Weinberg-Salam model on the lattice [1, 2] within
the framework of chiral lattice gauge theories based on the lattice Dirac operator satisfying the
Ginsparg-Wilson relation [3, 4]. We assume a local, gauge-covariant lattice Dirac operator D which
satisfies the Ginsparg-Wilson relation [5, 6, 7, 8, 9, 10, 11]. An explicit example of such lattice
Dirac operator is given by the overlap Dirac operator [6, 9], which was derived from the overlap
formalism [12, 13, 14, 15] / the domain wall fermion [16, 17, 18, 19, 20, 21]. With this choice, our
formulation is equivalent to the overlap formalism for chiral lattice gauge theories, or the domain
wall fermion approach [22, 23].

1.1 SU(2)×U(1) Gauge fields

We consider the four-dimensional lattice of the finite size L and choose lattice units,

Γ =
{

x = (x1,x2,x3,x4) ∈ Z4 | 0 ≤ xµ < L(µ = 1,2,3,4)
}

. (1.1)

SU(2) and U(1) gauge fields on Γ may be represented through periodic link fields U (1)(x,µ) ∈U(1),
U (2)(x,µ) ∈ SU(2) on the infinite lattice. We require the so-called admissibility condition on the
plaquette variables P(2)(x,µ,ν), P(1)(x,µ,ν) of gauge fields,

|Fµν(x)| < ε1, ∥1−P(2)(x,µ,ν)∥ < ε2 ( for all x, µ,ν), (1.2)

where Fµν(x)≡ 1
i lnP(1)(x,µ,ν)∈ (−π,π]. This condition ensures that the overlap Dirac operator[6,

9] is a smooth and local function of the gauge field if Y ε1 + ε2 < 1/30 (ε1,ε2 > 0), where Y is the
hyper-charge of the fermion on which the overlap Dirac operator acts [11]. To impose the admissi-
bility condition dynamically, we adopt the following action for the gauge fields:

SG =
1
g2

2
∑
x∈Γ

∑
µ,ν

tr{1−P(2)(x,µ,ν)}
[
1− tr{1−P(2)(x,µ,ν)}/ε2

2

]−1

+
1

4g2
1

∑
x∈Γ

∑
µ,ν

[
Fµν(x)

]2
{

1−
[
Fµν(x)

]2
/ε2

1

}−1
. (1.3)

1.2 Quarks and Leptons

Right- and left- handed Weyl fermions are introduced on the lattice based on the Ginsparg-
Wilson relation. Let us first consider a generic gauge group G and a Dirac field ψ(x) coupled to
the gauge field U(x,µ) in a certain representaion R of G. Given a local, gauge-covariant lattice
Dirac operator DL which acts on ψ(x) and satisfies the Ginsparg-Wilson relation, γ5DL + DLγ5 =
2DLγ5DL, one can introduce a chiral operator as

γ̂5 ≡ γ5(1−2DL), (γ̂5)2 = I. (1.4)

Then, the right- and left-handed Weyl fermions in the representaion R of G can be defined by the
eigenstates of the chiral operator γ̂5 (and γ5 for the anti-fields). Namely,

ψ±(x) = P̂±ψ(x), ψ̄±(x) = ψ̄(x)P∓, (1.5)
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where P̂± and P± are the chiral projection operators given by P̂± = (1± γ̂5)/2, P± = (1± γ5)/2.
Now we consider quarks and leptons in the Glashow-Weinberg-Salam model. For simplicity,

we consider the first family. We adopt the convention for the normalization of the hyper-charges
such that the Nishijima-Gell-Mann relation reads Q = T3 + 1

6Y . To describe the left-handed quarks
and leptons, which are SU(2) doublets, we introduce a left-handed fermion ψ−(x) with the index
α(= 1, · · · ,4), each component of which couples to the SU(2)×U(1) gauge field, U (2)(x,µ)⊗
{U (1)(x,µ)}Yα , with the hyper-charge Yα ( Y1,2,3 = 1 and Y4 = −3). Namely,

ψ−(x) = t (q1
−(x),q2

−(x),q3
−(x), l−(x)

)
. (1.6)

Similarly, to describe the right-handed quarks and leptons, which are SU(2) singlets, we introduce
a right-handed fermion ψ+(x) with the index β (= 1, · · · ,8), each component of which couples to
the U(1) gauge field, {U (1)(x,µ)}Yβ , with the hyper-charge Yβ (Y1,3,5 = 4, Y2,4,6 = −2, Y7 = 0 and
Y8 = −6). Namely,

ψ+(x) = t (u1
+(x),d1

+(x),u2
+(x),d2

+(x),u3
+(x),d3

+(x),ν+(x),e+(x)
)
. (1.7)

Then the action of quarks and leptons is given by

SF = ∑
x∈Γ

ψ̄−(x)DLψ−(x)+ ∑
x∈Γ

ψ̄+(x)DLψ+(x). (1.8)

1.3 Higgs field and its Yukawa-couplings to quarks and leptons

Higgs field is a SU(2) doublet with the hyper-charge Yh = +3. The action of the Higgs field
may be given by

SH = ∑
x

[
∑
ν

(∇νφ(x))† ∇νφ(x)+
λ
2

(
φ(x)†φ(x)− v2)2

]
, (1.9)

where φ(x) couples to the gauge field U (2)(x,µ)⊗ {U (1)(x,µ)}Yh and ∇ν is the SU(2)× U(1)
gauge-covariant difference operator. Yukawa couplings of the Higgs field to the quarks and leptons
may also be introduced as follows1:

SY = ∑
x

[
yu q̄i

−(x)φ̃(x)ui
+(x)+ y∗u ūi

+(x)φ̃(x)†qi
−(x)

+yd q̄i
−(x)φ(x)di

+(x)+ y∗d d̄i
+(x)φ(x)†qi

−(x)

+yl l̄−(x)φ(x)e+(x) + y∗l ē+(x)φ(x)†l−(x)
]
, (1.10)

where φ̃(x) is the SU(2) conjugate of φ(x).
Thus the total lattice action, S = SG +SF +SH +SY , defines a classical theory of the Glashow-

Weinberg-Salam model on the lattice with the first-family quarks and leptons. In this action, lo-
cality, gauge-invariance and lattice symmetries such as translations and rotations are manifest. CP
symmetry, however, is not manifest even with the real Yukawa couplings. But it is possible to show
that at the quantum level both the partition function and the on-shell amplitudes respect the CP
symmetry [24, 25]. With the three families, then, the breaking of CP symmetry comes from the
Kobayashi-Maskawa phase[26] as in the continuum theory.

1One may add the Dirac-type mass term for the neutrino, ∑x{yν l̄−(x)φ̃(x)ν+(x) + y∗ν ν̄+(x)φ̃(x)†l−(x)}.
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1.4 Topology of the SU(2)×U(1) gauge fields

The admissibility condition allows us to define a topological charge of the gauge fields through
the lattice Dirac operator DL [12, 13, 8, 10]: for the admissible SU(2) and U(1) gauge fields, one
has

Q(i) = ∑
x∈Γ

tr{γ5(1−DL)}(x,x)|U=U (i) (i = 1,2). (1.11)

For 0 < ε1 < π/3, the admissible U(1) gauge fields can also be classified by the magnetic fluxes,

mµν =
1

2π

L−1

∑
s,t=0

Fµν(x+ sµ̂ + tν̂), (1.12)

which are integers independent of x. mµν is related to Q(1) by Q(1) = (1/2)∑µν m2
µν [27]. Then the

admissible SU(2) and U(1) gauge fields may be classified by the topological numbers Q2 and mµν ,
respectively. We denote the space of the admissible SU(2) gauge fields with a given topological
charge Q(2) by U(2)[Q] and the space of the admissible U(1) gauge fields with a given magnetic
fluxes mµν by U(1)[m]. Strictly speaking, the complete topological classification of the space of
admissible SU(2) gauge fields is not known yet. But, as we will see, our construction is valid for
any SU(2) topological sectors as long as the U(1) magnetic flux vanishes identically.

2. Reconstruction theorem of the fermion measure

The properties of the fermion measure can be characterized by the so-called measure term
[3, 4] which is given in terms of the chiral basis and its variation with respect to the gauge fields as

Lη = i∑
j
(v j,δηv j)+ i∑

j
(u j,δηu j). (2.1)

Similar to the case of U(1) chiral lattice gauge theories [3], one can establish the following theorem
in the lattice Glashow-Weinberg-Salam model.

Theorem: In the topological sectors with vanishing U(1) magnetic flux, U(2)[Q]⊗U(1)[0], if there
exist local currents ja

µ(x)(a = 1,2,3), jµ(x) which satisfy the following four plus one properties, it
is possible to reconstruct the fermion measure (the bases {u j(x)}, {v j(x)}) which depends smoothly
on the gauge fields and fulfills the fundamental requirements such as locality, gauge-invariance,
integrability and lattice symmetries:

1. ja
µ(x), jµ(x) are defined for all admissible SU(2)×U(1) gauge fields in the given topological

sectors and depends smoothly on the link variables.

2. ja
µ(x) and jµ(x) are gauge-covariant and -invariant, respectively and both transform as axial

vector currents under the lattice symmetries.

3. The linear functional Lη = ∑x∈Γ{ηa
µ(x) ja

µ(x)+ηµ(x) jµ(x)} is a solution of the integrability
condition

δηLζ −δζ Lη +L[η ,ζ ] = iTr
{

P̂−[δη P̂−,δζ P̂−]
}

+ iTr
{

P̂+[δη P̂+,δζ P̂+]
}

(2.2)

for all periodic variations ηa
µ(x),ηµ(x) and ζ a

µ(x),ζµ(x).
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4. The anomalous conservation laws hold:

{∇∗
µ jµ}a(x) = tr{T aγ5(1−D)(x,x)}, (2.3)

∂ ∗
µ jµ(x) = tr{Y−γ5(1−DL)(x,x)}− tr{Y+γ5(1−DL)(x,x)}, (2.4)

where Y− = diag(1,1,1,−3) and Y+ = diag(4,−2, · · · ,0,−6).

5. The current jµ(x) has the scaling property with respect to the hyper-charge:

jµ(x) =
4

∑
α=1

YαFµ−

[
x;{U (1)(x,µ)}Yα ,U (2)(x,µ)

]
+

8

∑
β=1

Yβ Fµ+

[
x;{U (1)(x,µ)}Yβ

]
, (2.5)

where F± are certain local functionals of the link variables.

A sketch of the proof :
The smooth fermion measure exists if and only if the integrability condition holds true for any

closed curve Ut (t ∈ [0,1];U1 = U0) in the space of the admissible gauge fields:

W = det(1−P0− +P0−Q1−)det(1−P0+ +P0+Q1+), (2.6)

where W is defined by

W ≡ exp
{

i
∫ 1

0
dt Lη

}
, ηµ(x) = i∂tUt(x,µ)Ut(x,µ)−1 (2.7)

and Q±t is defined by the evolution operator of the projector Pt± = P̂±
∣∣
U=Ut

satisfying

∂tQt± = [∂tPt±,Pt±]Qt±, Q0± = 1. (2.8)

Since U(2)[Q]⊗U(1)[0] is a direct product space, any non-contractible loop in U(2)[Q]⊗U(1)[0] may
be deformed to the product of the loops in U(2)[Q] and U(1)[0], respectively. Then, in order to prove
the global integrability condition, one may consider separately the following two cases, (1) non-
contractible loops in U(2)[Q] with the trivial U(1) link field as a background and (2) non-contactible
loops in U(1)[0] with an arbitrarily chosen SU(2) link field in U(2)[Q] as a background.

The classification of the non-contractible loops in U(2)[Q] is not known so far [28]. When
U (1)(x,µ) = 1, however, the left-handed fermion ψ−(x)= t

(
q1
−(x), q2

−(x), q3
−(x), l−(x)

)
consists

of four degenerate SU(2) doublets and one may choose the basis vectors of ψ−(x) for any given
SU(2) gauge field U (2)(x,µ) ∈ U(2)[Q] as follows:

q1
−(x) = ∑

j
w j(x)c1

j , (2.9)

q2
−(x) = ∑

j

(
γ5C−1 ⊗ iσ2

)
[w j(x)]

∗ c2
j , (2.10)

q3
−(x) = ∑

j
w j(x)c3

j , (2.11)

l−(x) = ∑
j

(
γ5C−1 ⊗ iσ2

)
[w j(x)]

∗ c4
j , (2.12)

5
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where {w j(x)} is an arbitrarily chosen basis for a single left-handed SU(2) doublet. With this
choice of the basis, one can infer that the measure term vanishes identically and therefore W = 1.
On the other hand, from the charge conjugation property of Qt−,

Qt− = ⊕4
i=1 Qt−(i), Qt−(i) = (γ5C−1 ⊗ iσ2)

{
Qt−(i)

−1}T
(Cγ5 ⊗ (iσ2)−1), (2.13)

it follows that

det(1−P0− +P0−Q1−) =
[
det

(
1−P0−(1) +P0−(1)Q1−(1)

)]4 = 1. (2.14)

Thus the measure of the chiral fermion ψ−(x) can be defined globally within U(2)[Q] and the lattice
counterpart of the SU(2) global anomaly [29, 30, 31] is absent in this case.

The non-trivial U(1) loops consist of the loops along the gauge orbits (gauge loops) and the
loops along the Wilson lines (non-gauge loops), as shown in [3]. For gauge loops, the proof goes
just like the case of the abelian theories [3]. For non-gauge loops, one has

Lη = 2π jν(0)|
U (2)⊗U (1)

t
, ηµ(x)(ν) = −iU[w](x,µ)−1∂tνU[w](x,µ) = 2πδµνδx̃0, (2.15)

where the SU(2) gauge field U (2)(x,µ) is chosen arbitrarily in U(2)[Q] and is fixed as a background.
Noting the scaling property of the U(1) measure term current, the l.h.s. can be evaluated as

W = exp

{
i

(
4

∑
α=1

Yα

) ∫ 2π

0
dtFν−(0)

}
· exp

{
i

(
8

∑
β=1

Yβ

) ∫ 2π

0
dtFν+(0)

}
= 1. (2.16)

On the other hand, from the factorization properties of Q1±,

Q1− = ⊕4
α=1 {Q1−|Y=1}Yα , Q1+ = ⊕8

β=1 {Q1+|Y=1}Yβ (2.17)

the r.h.s. can be evaluated as

det{1−P0± +P0±Q1±}
= (det{1−P0± +P0±Q1±}|Y=1)

tr{Y±} = 1.

This completes the proof of the global integrability condition, and therefore, the smoothness
of the fermion measure. Locality, gauge-invarinace and lattice symmetries of the fermion measure
also follow from the properties of the measure term currents, ja

µ(x)(a = 1,2,3), jµ(x) [1].

3. An explicit construction of the mesure term

It is indeed possible to construct the local currents ja
µ(x)(a = 1,2,3) and jµ(x) which satisfy

all the required properties for the reconstruction theorem. Full details of our construction is given
in [1], which is an extension of the construction of U(1) chiral gauge theories [3, 32, 33] to the case
of the SU(2)×U(1) chiral gauge theory.
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