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Dependence dd/r¢ (inverse Sommer parameter in units of lattice spacing @my(quark mass
in lattice unit) has been observed in all lattice QCD siniala with sea quarks including the ones
with improved actions. How much of this dependence is asgaliolation has remained an in-
triguing question. Our approach has been to investigatssiie with an action with known lattice
artifacts, i.e., the standard Wilson quark and gauge aetitn3 = 5.6 and 2 degenerate flavors
of sea quarks on $£6< 32 lattices. In order to study in detail the sea quark massmtignce,
measurements are carried out at eight values of the PCA quass valuesny from about
0.07 to below 0.015. Though scaling violations may indeegtesent for relatively largam,

a consistent scenario at sufficiently sy seems to emerge in the mass-independent scheme
where for a fixed3, 1/ro and+/o have linear dependence og as physical effects similar to the
quark mass dependence of the rho mass. We present eviderihes fscenario and accordingly
extract the lattice scalea(= 0.08057) fm, a-* = 2.45(2) GeV) by chiral extrapolation to the
physical point.
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1. Introduction

The Sommer parameter, denotedrbyis not a directly measurable quantity and as such may
have uncertainties regarding its value. The method of determination of the &déitEa using the
Sommer parameter may also not be one’s favorite way. However, the elodng/a with amy,
wheremy is the sea quark mass, in simulations of all formulations (including improvedbwes)s
of lattice QCD has intrigued the lattice community for the last decade. Basically iestigns
appear: a) Is this a cut-off effect or a physical effect? b) How is ttiiedescalea to be determined?
Related issues are whether the saals to be taken as dependent on the quark masslin that
case, how does one chirally extrapolate hadronic quantities like masseglgat quark masses are
all at different scales? So far there is no theoretical understandiing égsues raised above.

2. Our Simulation

We have used unimproved Wilson gauge and fermion actions with well-ki@&h cut-off
effects with 2 degenerate light flavors of sea quark at a fixed gaugsiog given byB = 6/g° =
5.6 on 1632 lattices. One important feature of our investigation was large numbergwalues
of sea quark masses roughly in the raagg ~ 0.07 — 0.014.

At each quark mass, 5000 equilibrated trajectories were generatedthsisgandard HMC
algorithm (DDHMC runs are underway on larger volumes). Using highly opéthigaussian
smearing at both mesonic source and sink, pion and rho masses and tagircdastants were
computed [[L].

APE smearing was used on the gauge configurations with smearing levelOpvithe = 2.5
wherec/4 = 1/(e + 4) was the coefficient of the staples. Expectation values of Wilson loops
<W(RT) > with rectangular extent® and T were then measured up To= 16 andR = 8\/3.
Reasonable plateau was obtained in effective potential varspists betweendl = 3 andT =
5. The static potentiahV(R) was extracted from single exponential fits betwéBhin, Tmax] =
[3,4], [3,5], [4,5] using< W(R, T) >= C(R)exp—aV(R)T]. Optimum smearing level was deter-
mined at a given quark mass by observing the ground state ovefRjpas a function oR (for
details see[[1[]2]). The optimum smearing level was found to be 30 for theedigthree quark
masses and 25 for the rest.

At eachf3 and quark mass, the static potena®|(R) as obtained from the Wilson loops was
analyzed with the phenomenologically successful well-known ansatz:

1 1

av(R) :aVo+a20R—g—5ROT<[R} —R> 2.1)

wheredrort is the coefficient of the lattice correction term with

[1] _4m coqaqg -R)

R| ~ LS & 4sirt(ag/2) @2

being the lattice fourier transform of the gluon propagator.

The first 3 terms o&V(R) in eq. [2]l above is differentiated to obtain the Sommer parame-
ter: a/rc = 1/Re = ac¥/2/ /(A — a) where. 45 = 1.65 and.#; = 1 giving rise to the Sommer
parametersg andry respectively.
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Figure 1: Fits of the static potential at = 0.1575. The top panel shows the fitting range.

3. Numerical Results

A few general observations are noted regarding our fits of the statiotpaitei) The difference
([1/R] — 1/R) is never negligible on a finite lattice. (iy is expected to run witlR at these
intermediate length scales. (iii) We can only estimate an avemageer the values oR where
the static potential is fit. (iv) Perturbative running is generally applicabdeates> 2 GeV which
translates int&R < 1 in our case.

We want to emphasize the importance of determiminthe coefficient of the AR (Coulomb)
term, origin of which is in the continuum perturbation theory. To determine itigliane naturally
has to probe the smdRregion which has the problem of lack of rotational symmetry on the lattice.
However, in our case, use of the correction term proportionak¢g does the job as exemplified
by fig. I where the fits describe the corrected data much beyond thedé.relowever, to achieve
such beautiful fits, one needs to tune all the fit parameters and the smieaehgSignature of
good fits is not limited to fig[]1. A good fit should also produce the valuedzef close to that
of a (unlike the random values as found fi [3]) and should show expectealtoe of a, e.g.,a
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Figure 2: a versusRmnax plots at fixed values dRy,, and threel ranges foix = 0.1575.
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Figure 3: Left: a versusRyn at fixedRmax for different values of the smearing level. Riglt:versusam,

at two values oRmin

should increase a8y, increases and also as the smearing level increases (unlike wrongdsehav
as found in fig. 22 in[[4]).
The above checks on the determinatioroois crucial to our observation and inference. At
Wilson hopping parameter = 0.1575 @my ~ 0.03), Fig.[P shows that is relatively insensitive to
change oRmayx, however, the rangBmin, Tmax = [3,4] andRmin = /2 produces the most accurate
determination ofx.
At the samex, the left panel of fig[]3 shows the behaviormfversusRmin at various values
of the smearing level and it exhibits the expected dependendg,@nand the smearing level.
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Figure 4: ac'/? anda/ry versusam, for two different values oRmin

It also shows that the most precise valuecofs obtained at the smalle®yin = v/2 anda is
determined progressively impreciselyRs, increases and beyoiih,i, = 2 because of imprecise
determinatioror does not grow witlRmp.

The right panel of fig.[]3 shows for a givéRinax = 6.708 andk = 0.1575 thata is weakly
dependent oam, for two values oRyin = V2, 2. In particular, this dimensionless coefficient does
not significantly depend oam, for small enouglam, < 0.035.

In fig. 4 we show that foam, < 0.035, bothag!/? (left panel) anda/r; (right panel) (and
naturally alsc/ro, although the plot is not shown here) can be fit linearly vaitly:

acl/? = C; +Cram, (3.1)
a/rc = Ac+ Beamy (3.2)

We also note that fig[] 4 shows data for two valueRgf, used in previous figures. Qualitative
conclusions about independencenoénd linear dependence af*/2 anda/r. onamy for amy <
0.035 doesotdepend on the choice &, as long aRRnin is small enough (obviously the data,
especiallya, is more accurate for small&q;,). In fact, the above qualitative conclusions do not
depend on the choice of the values of the fitting parameters or the smeahgddong as they
remain sensible. In addition, we observe from the right panel offfig. taftizough the individual
values ofa andag?/2 depend on the choice ®&yin, the value ofa/r¢ at all amy is relatively
insensitive to it. For our final analysis, we taR@in, Tmax = [3, 4], [Rmin, Rmax = [V/2, 3v/5] and
APE smearing level is 30 for the lightest 3 quark masses and 25 for thef thet quark masses.
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Figure5: Linear chiral extrapolation dd/rc andam, with (amy)?

Using the value of the lattice spacing (determined later) the smallest quark messhiere is
about 30 - 35 MeV andny, < 0.035 roughly translates intog < 85 MeV at thisp3 (= 5.6). Some of
our smaller quark masses including the smallest one can be compared witholataimed with the
same Wilson lattice QCD action parametdtd[5, 6] but at larger lattice volumehigrmparison
shows that our quark masses do not have any significant finite sizeffe&s. Our values d/ro
also are not expected to have any FS effect because the fitting raRgmihthe valueg or ry are
well within the physical linear dimension of our lattice.

Our quark masses are determined using PCAC and absence of FSaftaat quark masses
establishes that PCAC is well satisfied on the lattice. The PCAC on the latticesdifben that in
the continuum byO(a). FS effect, if any, also enters through tki¢a) term. As a result, absence
of FS effect is also an indirect indication of absence of scaling violatioesteoff effects.

4. Interpretation of the Results

Our numerical observation at fixg8l of amy-independence of the dimensionless coefficient
a is interpreted as a signal for negligible cut-off effectanfor small enoughamy,. At fixed 3,
the observed linear dependenceaof/? anda/r. onamy for am, < 0.035 is then interpreted as a
physical dependenad 0%/2 and Y/r¢ onmy:

0'/?2 = €+ Comg with C; = a%; (4.1)
1/rc = o +Bcmy with Ac = ag 4.2)
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In other words, for small enougdim, the cut-off dependence is negligible, a mass-independent
scale-setting scheme at fix@dis implied, i.e., the lattice spacirgyis fixed at a fixed3, and the
physical dependence of*/? and Vr. on my allows for a chiral extrapolation.

Although absence of scaling violations cannot be solidly established wmeskas data for
different3, the issue is that one still needs to set a scale at a fixad unless one has a criterion
for getting rid of possible scaling violations, how is one ever going to achievsd without that
how would one do chiral extrapolation of hadronic observables? linaays-independent scaling
violations are present, that should then also invalidate all chiral extrapwdatione to date on
hadronic observables. One hopes, consistent with notions of ualitgrshat at large enougfi
(i.e., small enough lattice spaciay and small enough quark masg, all valid formulations of
lattice QCD should reach a regime where all cut-off effects are negligible.

The left panel of fig.[]5 then shows a linear chiral extrapolatioa/of in (amy)?. The lat-
tice spacing at the physical point is then extracted by solving a quadraitatieq in the lattice
spacing, along the lines of[2] (for details, s€k [7]). Our best detetinimaf the lattice spacing
is a=0.08057) fm or a—! = 2.45(2) GeV withrg = 0.49 fm put in. This determination tallies
very well with an independent hadronic determination of the lattice spacinggdhra linear chiral
extrapolation ofam, with (amy)? (shown in the right panel of fig] 5). The hadronic determination
is less accurate and yields= 0.0800(20) fm, i.e.,a ! = 2.47(6) GeV.

Details of this work can be found ifi[7].

Numerical calculations are carried out on a Cray XD1 (120 AMD Opterdr2@Hz) sup-
ported by the 18 and 11" Five Year Plan Projects of the Theory Division, SINP under the DAE,
Govt. of India. This work was in part based on the MILC collaborationiblig lattice gauge
theory code. See http://physics.utah.edu/ dtar/milc.html .
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