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Dependence ofa/rc (inverse Sommer parameter in units of lattice spacing a) onamq (quark mass

in lattice unit) has been observed in all lattice QCD simulations with sea quarks including the ones

with improved actions. How much of this dependence is a scaling violation has remained an in-

triguing question. Our approach has been to investigate theissue with an action with known lattice

artifacts, i.e., the standard Wilson quark and gauge actionwith β = 5.6 and 2 degenerate flavors

of sea quarks on 163 × 32 lattices. In order to study in detail the sea quark mass dependence,

measurements are carried out at eight values of the PCAC quark mass valuesamq from about

0.07 to below 0.015. Though scaling violations may indeed bepresent for relatively largeamq,

a consistent scenario at sufficiently smallamq seems to emerge in the mass-independent scheme

where for a fixedβ , 1/r0 and
√

σ have linear dependence onmq as physical effects similar to the

quark mass dependence of the rho mass. We present evidence for this scenario and accordingly

extract the lattice scale (a = 0.0805(7) fm, a−1 = 2.45(2) GeV) by chiral extrapolation to the

physical point.
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1. Introduction

The Sommer parameter, denoted byr0, is not a directly measurable quantity and as such may
have uncertainties regarding its value. The method of determination of the latticescalea using the
Sommer parameter may also not be one’s favorite way. However, the change of r0/a with amq,
wheremq is the sea quark mass, in simulations of all formulations (including improved versions)
of lattice QCD has intrigued the lattice community for the last decade. Basically two questions
appear: a) Is this a cut-off effect or a physical effect? b) How is the lattice scalea to be determined?
Related issues are whether the scalea is to be taken as dependent on the quark massmq. In that
case, how does one chirally extrapolate hadronic quantities like masses given that quark masses are
all at different scales? So far there is no theoretical understanding ofthe issues raised above.

2. Our Simulation

We have used unimproved Wilson gauge and fermion actions with well-knownO(a) cut-off
effects with 2 degenerate light flavors of sea quark at a fixed gauge coupling given byβ = 6/g2 =

5.6 on 16332 lattices. One important feature of our investigation was large number, viz.,8 values
of sea quark masses roughly in the rangeamq ∼ 0.07 − 0.014.

At each quark mass, 5000 equilibrated trajectories were generated usingthe standard HMC
algorithm (DDHMC runs are underway on larger volumes). Using highly optimized gaussian
smearing at both mesonic source and sink, pion and rho masses and their decay constants were
computed [1].

APE smearing was used on the gauge configurations with smearing level up to40 withε = 2.5
wherec/4 = 1/(ε + 4) was the coefficient of the staples. Expectation values of Wilson loops
< W(R,T) > with rectangular extentsR andT were then measured up toT = 16 andR= 8

√
3.

Reasonable plateau was obtained in effective potential versusT plots betweenT = 3 andT =

5. The static potentialaV(R) was extracted from single exponential fits between[Tmin, Tmax] =

[3,4], [3,5], [4,5] using< W(R,T) >= C(R)exp[−aV(R)T]. Optimum smearing level was deter-
mined at a given quark mass by observing the ground state overlapC(R) as a function ofR (for
details see [1, 2]). The optimum smearing level was found to be 30 for the lightest three quark
masses and 25 for the rest.

At eachβ and quark mass, the static potentialaV(R) as obtained from the Wilson loops was
analyzed with the phenomenologically successful well-known ansatz:

aV(R) = aV0 +a2σR− α
R
−δROT

([

1
R

]

− 1
R

)

(2.1)

whereδROT is the coefficient of the lattice correction term with
[

1
R

]

=
4π
L3 ∑

qi 6=0

cos(aqi ·R)

4sin2(aqi/2)
(2.2)

being the lattice fourier transform of the gluon propagator.
The first 3 terms ofaV(R) in eq. 2.1 above is differentiated to obtain the Sommer parame-

ter: a/rc = 1/Rc = aσ1/2/
√

(Nc−α) whereN0 = 1.65 andN1 = 1 giving rise to the Sommer
parametersr0 andr1 respectively.
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Figure 1: Fits of the static potential atκ = 0.1575. The top panel shows the fitting range.

3. Numerical Results

A few general observations are noted regarding our fits of the static potential: (i) The difference
([1/R]− 1/R) is never negligible on a finite lattice. (ii)α is expected to run withR at these
intermediate length scales. (iii) We can only estimate an averageα over the values ofR where
the static potential is fit. (iv) Perturbative running is generally applicable atscales& 2 GeV which
translates intoR. 1 in our case.

We want to emphasize the importance of determiningα , the coefficient of the 1/R (Coulomb)
term, origin of which is in the continuum perturbation theory. To determine it reliably, one naturally
has to probe the smallR region which has the problem of lack of rotational symmetry on the lattice.
However, in our case, use of the correction term proportional toδROT does the job as exemplified
by fig. 1 where the fits describe the corrected data much beyond the fit range. However, to achieve
such beautiful fits, one needs to tune all the fit parameters and the smearinglevel. Signature of
good fits is not limited to fig. 1. A good fit should also produce the values ofδROT close to that
of α (unlike the random values as found in [3]) and should show expected behavior ofα , e.g.,α
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Figure 2: α versusRmax plots at fixed values ofRmin and threeT ranges forκ = 0.1575.
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Figure 3: Left: α versusRmin at fixedRmax for different values of the smearing level. Right:α versusamq

at two values ofRmin

should increase asRmin increases and also as the smearing level increases (unlike wrong behavior
as found in fig. 22 in [4]).

The above checks on the determination ofα is crucial to our observation and inference. At
Wilson hopping parameterκ = 0.1575 (amq ≈ 0.03), Fig. 2 shows thatα is relatively insensitive to
change ofRmax, however, the range[Tmin, Tmax] = [3,4] andRmin =

√
2 produces the most accurate

determination ofα .

At the sameκ, the left panel of fig. 3 shows the behavior ofα versusRmin at various values
of the smearing level and it exhibits the expected dependence onRmin and the smearing level.
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Figure 4: aσ1/2 anda/r1 versusamq for two different values ofRmin

It also shows that the most precise value ofα is obtained at the smallestRmin =
√

2 andα is
determined progressively imprecisely asRmin increases and beyondRmin = 2 because of imprecise
determinationα does not grow withRmin.

The right panel of fig. 3 shows for a givenRmax = 6.708 andκ = 0.1575 thatα is weakly
dependent onamq for two values ofRmin =

√
2, 2. In particular, this dimensionless coefficient does

not significantly depend onamq for small enoughamq . 0.035.
In fig. 4 we show that foramq . 0.035, bothaσ1/2 (left panel) anda/r1 (right panel) (and

naturally alsoa/r0, although the plot is not shown here) can be fit linearly withamq:

aσ1/2 = C1 +C2amq (3.1)

a/rc = Ac +Bcamq (3.2)

We also note that fig. 4 shows data for two values ofRmin used in previous figures. Qualitative
conclusions about independence ofα and linear dependence ofaσ1/2 anda/rc on amq for amq .

0.035 doesnot depend on the choice ofRmin as long asRmin is small enough (obviously the data,
especiallyα , is more accurate for smallerRmin). In fact, the above qualitative conclusions do not
depend on the choice of the values of the fitting parameters or the smearing level as long as they
remain sensible. In addition, we observe from the right panel of fig. 4 that although the individual
values ofα and aσ1/2 depend on the choice ofRmin, the value ofa/rc at all amq is relatively
insensitive to it. For our final analysis, we take[Tmin, Tmax] = [3, 4], [Rmin, Rmax] = [

√
2, 3

√
5] and

APE smearing level is 30 for the lightest 3 quark masses and 25 for the restof the quark masses.
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Figure 5: Linear chiral extrapolation ofa/rc andamρ with (amπ)2

Using the value of the lattice spacing (determined later) the smallest quark mass inuse here is
about 30 - 35 MeV andamq . 0.035 roughly translates intomq . 85 MeV at thisβ (= 5.6). Some of
our smaller quark masses including the smallest one can be compared with values obtained with the
same Wilson lattice QCD action parameters [5, 6] but at larger lattice volumes andthis comparison
shows that our quark masses do not have any significant finite size (FS)effects. Our values ofa/r0

also are not expected to have any FS effect because the fitting range inR and the valuer0 or r! are
well within the physical linear dimension of our lattice.

Our quark masses are determined using PCAC and absence of FS effecton our quark masses
establishes that PCAC is well satisfied on the lattice. The PCAC on the lattice differs from that in
the continuum byO(a). FS effect, if any, also enters through thisO(a) term. As a result, absence
of FS effect is also an indirect indication of absence of scaling violations or cut-off effects.

4. Interpretation of the Results

Our numerical observation at fixedβ of amq-independence of the dimensionless coefficient
α is interpreted as a signal for negligible cut-off effect inα for small enoughamq. At fixed β ,
the observed linear dependence ofaσ1/2 anda/rc on amq for amq . 0.035 is then interpreted as a
physical dependenceof σ1/2 and 1/rc onmq:

σ1/2 = C1 +C2mq with C1 = aC1 (4.1)

1/rc = Ac +Bcmq with Ac = aAc (4.2)
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In other words, for small enoughamq, the cut-off dependence is negligible, a mass-independent
scale-setting scheme at fixedβ is implied, i.e., the lattice spacinga is fixed at a fixedβ , and the
physical dependence ofσ1/2 and 1/rc onmq allows for a chiral extrapolation.

Although absence of scaling violations cannot be solidly established unlessone has data for
differentβ , the issue is that one still needs to set a scale at a fixedβ and unless one has a criterion
for getting rid of possible scaling violations, how is one ever going to achieveit and without that
how would one do chiral extrapolation of hadronic observables? If anymass-independent scaling
violations are present, that should then also invalidate all chiral extrapolations done to date on
hadronic observables. One hopes, consistent with notions of universality, that at large enoughβ
(i.e., small enough lattice spacinga) and small enough quark massmq, all valid formulations of
lattice QCD should reach a regime where all cut-off effects are negligible.

The left panel of fig. 5 then shows a linear chiral extrapolation ofa/rc in (amπ)2. The lat-
tice spacing at the physical point is then extracted by solving a quadratic equation in the lattice
spacing, along the lines of [2] (for details, see [7]). Our best determination of the lattice spacing
is a = 0.0805(7) fm or a−1 = 2.45(2) GeV with r0 = 0.49 fm put in. This determination tallies
very well with an independent hadronic determination of the lattice spacing through a linear chiral
extrapolation ofamρ with (amπ)2 (shown in the right panel of fig. 5). The hadronic determination
is less accurate and yieldsa = 0.0800(20) fm, i.e.,a−1 = 2.47(6) GeV.

Details of this work can be found in [7].
Numerical calculations are carried out on a Cray XD1 (120 AMD Opteron@2.2GHz) sup-

ported by the 10th and 11th Five Year Plan Projects of the Theory Division, SINP under the DAE,
Govt. of India. This work was in part based on the MILC collaboration’s public lattice gauge
theory code. See http://physics.utah.edu/ dtar/milc.html .
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