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1. Introduction

The study of the excited baryon spectrum is an important research program for lattice QCD.
In this report we present preliminary findings for the nucleon excited spectrum using theN f = 2
anisotropic Wilson action. We see evidence for aJP = 5

2
−

state.
We construct operators which transform according to the irreducible representations (irreps)

of the lattice rotation group (the octahedral group for cubic lattices) [1, 2]. There are six double-
valued irreps:G1g, Hg, G2g, G1u, Hu, andG2u, where the “g” subscript denotes positive parity
(gerade) irreps and the “u” subscript denotes negative parity (ungerade) irreps. We identify the
continuum limit spins by subducing the continuum rotation group to the octahedral group. The
pattern of continuum spin states in each octahedral irrep issummarized in Table 1.

To extract the excited spectrum, we construct a large numberof operators in each symmetry
channel. It is necessary to include operators with quarks displaced with respect to one another to
capture radial and orbital excitations. After selecting a manageable set of optimized operators, we
use the variational method, diagonalizing the matrix of correlation functions, to extract the excited
spectrum. To distinguish between scattering states and resonances, it is necessary to include multi-
hadron operators in the matrix of correlation functions. However, we use only three quark operators
in this work.

Table 1: The number of occurrences of each double valued irrepΛ = {G1,H,G2} of the octahedral group
for different values of continuumJ up to 11

2 .

Λ J = 1
2

3
2

5
2

7
2

9
2

11
2

G1 1 0 0 1 1 1
H 0 1 1 1 2 2
G2 0 0 1 1 0 1

2. Nucleon operators

We construct baryon operators which transform as irreps of the octahedral group as described
in [2]. The basic building blocks are covariantly displacedsmeared quark fields(D̃(p)

j ψ̃(x))Aaα

with flavorA, colora, and spinα . The smeared quark field̃ψ is displacedp links in the j direction
( j = 0,±1,±2,±3). Both quark smearing and gauge link smearing are necessary to reduce noise
and coupling to high energy states [3]. We use Gaussian quarksmearing and stout link smearing
[4]. From the displaced single quark operators, we construct elemental operators

ΦABC
αβγ ;i jk(x) = εabc(D̃

(p)
i ψ̃(x))Aaα (D̃(p)

j ψ̃(x))Bbβ (D̃(p)
k ψ̃(x))Ccγ , (2.1)

whereεabc is the antisymmetric Levi-Civita symbol. To construct nucleon operators we project to
I = 1

2, I3 = 1
2:

Nαβγ ;i jk = Φuud
αβγ ;i jk −Φduu

αβγ ;i jk. (2.2)

We use several different patterns of displacements for our three quark operators, as summa-
rized in Table 2. Taking linear combinations of these elemental operators, we project to the irreps
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Table 2: Patterns of quark displacements employed in elemental operators. The displacement indices indi-
cate the direction of the gauge-covariant displacement foreach quark;i, j,k = {0,±1,±2,±3}. The quarks
all have the same displacement length.

Operator type Displacement indices

�
��
uuu

single-site
i = j = k = 0

muu u
singly-displaced

i = j = 0, k 6= 0

huu u
doubly-displaced-Ii = 0, j = −k, k 6= 0

hu
u

u
doubly-displaced-L

i = 0, | j| 6= |k|, jk 6= 0

eu u
u

triply-displaced-T
i = − j, | j| 6= |k|, jk 6= 0

e
u

u
u��

triply-displaced-O
|i| 6= | j| 6= |k|, i jk 6= 0

of the octahedral group. This results in hundreds of nucleonoperators in each channel, which are
then “pruned” to manageable sets as described in [5].

To optimize the variational method, we would like a set of lownoise, linearly independent
operators. We first eliminate noisy operators based on the signal to noise ratio in diagonal elements
of the correlation matrix. To test for linear independence of a set of operators, we use the condition
number of the normalized correlation matrix on time slicet = at :

Ĉi j =
Ci j(at)

√

Cii(at)C j j(at)
. (2.3)

For completely orthogonal operators, the condition numberis 1 while for completely degenerate
operators, the condition number diverges. We therefore seek a set of operators that minimizes the
condition number. Pruning first within each operator type and then across all remaining operators,
we produce a set of 16 optimal operators in each channel. The operators used in this work are the
same as those in [5].

We can write the correlator of two nucleon operators in termsof three quark propagators

G̃(ABC)

(α |ᾱ)(β |β̄ )(γ |γ̄)
= ∑x εabcεāb̄c̄Q̃(A)

aα |āᾱ(x, t|x0,0)×Q(B)

bβ |b̄β̄ (x, t|x0,0)

× Q(C)
cγ |c̄γ̄(x, t|x0,0), (2.4)

whereQ(A)
aα |āᾱ(x, t|x0,0) is a single quark propagator of flavorA from source sitex0 at timet = 0 to

sink sitex at timet. The nucleon correlation matrix is

Ci j = ci
αβγ c̄ j

ᾱ β̄ γ̄

{

G̃(uud)

(α |ᾱ)(β |β̄ )(γ |γ̄)
+ G(uud)

(α |β̄)(β |ᾱ)(γ |γ̄)
−G(uud)

(α |γ̄)(β |β̄ )(γ |ᾱ)
−G(uud)

(α |β̄)(β |γ̄)(γ |ᾱ)

3
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−G(uud)

(β |β̄ )(γ |ᾱ)(α |γ̄)
−G(uud)

(β |ᾱ)(γ |β̄)(α |γ̄)
+ G(uud)

(γ |γ̄)(β |β̄ )(α |ᾱ)
+ G(uud)

(γ |β̄)(β |γ̄)(α |ᾱ)

}

, (2.5)

where theci
αβγ are the coefficients to project the operators to irreps of theoctahedral group. The

“ i” superscript identifies each individual nucleon operator used to construct the matrix.

3. Computational method

3.1 Variational Method

We use the variational method [6, 5] to extract the excited spectrum from the matrix of corre-
lation functions, numerically solving the generalized eigenvalue problem

C(Λ)
i j (t)v(n)

j (t, t0) = α(Λ)
n (t, t0)C

(Λ)
i j (t0)v

(n)
j (t, t0), (3.1)

wheren labels the eigenstates andΛ the double valued irrep of the octahedral group. To reduce
instabilities in the eigenvectors due to degeneracies and numerical uncertainties, we solve the eigen-
value problem on a single time slicet∗. This time is selected to be as small as possible to minimize
the noise, but large enough that the eigenvectors have stabilized. The correlator on all other time
slices is then rotated to this fixed basis of eigenvectors.

The diagonal elements of the rotated correlation matrixC̃i j(t) are related to the energies by

C̃(Λ)
ii (t) ≃ e−Ei(t−t0)

(

1+O

(

e−|δE|t
))

+ ∑
n6=i

αn(t)e
−En(t−t0)

, (3.2)

whereδE is the difference betweenEi and the next closest energy. The summation is a correction
which results from the fact that we diagonalize only att∗. On other time slices we expect a small
overlap between the basis vectors and all other energy eigenstates. However, the coefficientsαn(t)
should be negligible neart∗. We can calculate the fixed eigenvector effective energy via

Ee f f
i (t) = ln

[

C̃(Λ)
ii (t)

C̃(Λ)
ii (t +1)

]

. (3.3)

3.2 Lattice Action

We used 243 × 64 anisotropic lattices with the temporal lattice spacingat three times finer
than the spatial lattice spacing. Gauge configurations weregenerated using the Wilson action. The
scale was set with the Sommer parameter. We analyzed an ensemble of 430 configurations with
Mπ = 400 MeV.

3.3 Fit Details

Because baryon operators create a baryon and annihilate an antibaryon and we use antiperiodic
temporal boundary conditions, if we create a baryon state att = 0, we also create a state which
propagates backwards in time from the opposite temporal endof the lattice. Because fermions and
antifermions have opposite intrinsic parity, the antibaryon propagating backward in time has parity
opposite to that of the fermion propagating forward in time.

Since the signals decay exponentially, the backward-propagating signal will only be above
the noise level for time slices above some threshold value oftime. If the forward signal has an
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effective energy plateau in a region below this threshold then we can extract the energy of the
state by fitting the correlation function with an exponential decay through the plateau without any
interference from the backward propagating signal. This was, in fact, the case for all channels
except forG1u. In this channel, the backward propagating signal was dominated by theG1g ground
state, the lowest energy state in the spectrum. For our lattice, the backward-propagating signal
decayed slowly enough and the temporal extent was small enough (due to the anisotropy) that the
G1u effective energies had significant backward contamination. To extract the energy levels, we fit
the correlation functions as a forward exponential decay plus a backward exponential decay which
was constrained by theG1g ground state.

We performed fully correlatedχ2 minimization fits. For each state a fit range was selected
such that theχ2 was minimized, the quality factorQ was maximized, the corresponding effective
energy plot plateaued in the fit range, and the fit parameters were stable under small variations in
the fit range. As stated above, each channel except for theG1u was modeled as

C̃(Λ)
ii (t) = Ae−E(Λ)

i (t−t0)
. (3.4)

TheG1u correlation functions were fit simultaneously with theG1g ground state, constraining the
G1g ground state energy to be equal to the energy of the backward-propagatingG1u state:

C̃(G1u)
ii = Ae−E

(G1u)
i (t−t0) + Be−E

(G1g)

0 (T−t)

C̃
(G1g)
00 = De−E

(G1g)

0 (t−t0) (3.5)

We estimated the uncertainty in the energy through a jackknife analysis. We repeated the fit for
each single elimination jackknife sample. The average energy and its jackknife error are reported.

3.4 Filtering

The presence of the backward-propagating state in theG1u channel made the Lüscher method,
the diagonalization of the correlation matrix on each time step, unworkable because it led to large
numerical instabilities in the eigenvectors. We tested a method based on filtering out the backward
signal prior to diagonalization. In a time interval where the backward signal is simply the ground
state of the opposite parity channel we model the unrotated correlation matrix as

C(Λ)
i j (t) = ∑

n
Ane−EΛ

n (t−t0) + Be−EΛc
0 (T−t0)

. (3.6)

We define the filtered correlator as

C(Λ)
f ilt,i j(t, t1) = C(Λ)

i j (t)−C(Λ)
i j (t1)+ (1− e−EΛc

0 )
t1

∑
j=t+1

C(Λ)
i j ( j) (3.7)

= ∑
n

An

[

1+
1− e−EΛc

0

eEΛ
n −1

]

(

e−EΛ
n (t−t0) − e−EΛ

n (t1−t0)
)

, (3.8)

wheret1 is a time where the backward signal is, in fact, described by asingle exponential. The
filtered correlators consist of the forward signal plus a constant term. The diagonalization of the
filtered correlators using the Lüscher method produced stable eigenvectors, and the energy of the
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states could be extracted by fitting the principal correlation functions to a single exponential decay
with a constant term. This method did not produce any significant improvement over the results
from the fixed eigenvector method, but we point out that the filtering is necessary to extract the
excited spectrum using the Lüscher method when there is significant backwards contamination in
the effective energy.

4. Results

Four states were obtained in each channel. A plot of the spectrum is shown in Fig. 1. In the
positive parity channels, we can identify theG1g ground state with the nucleon. Due to the high
degree of degeneracy in the excited positive parity channel, it is difficult to identify the excited
states.

Results for the low energy negative-parity excited states allow for some interesting interpreta-
tions. In theG1u channel, we see the energy of the lowest energy states are close to the sum of the
pion and nucleon mass. This raises the possibility that one of these states is, in fact, a pion-nucleon
state. Even if this is the case, the lowest negative-parity nucleon state inG1u is below the first
excited positive-parity state inG1g . This does not match the physical spectrum where the lowest
negative parity resonance, theN∗(1535) is above the first excited positive parity state, theN(1440).

In the Hu channel, we expect the lowest state to correspond to a spin3
2
−

state. We interpret
the lowestHu state as theN(1520). In theG2u channel we see that the lowest-energy is degenerate
with a partnerHu state, with no state in theG1u channel at the same energy. This is the signature of
a spin5

2
−

state. Two of the six components needed for a spin5
2
−

state are occur in theG2u channel

and four in theHu channel. TheG2u andHu states corresponding to the5
2
−

must be degenerate in
the continuum limit. Moreover, there should not be aG1u state that is degenerate with these two
states as that would indicate the possible presence of a spin7

2
−

state. These conditions are satisfied

nearEat = 0.35 giving clear evidence for a52
−

state. We interpret this to be the lowest5
2
−

state in
the physical spectrum, theN(1675).

A 5
2
−

state has not been seen in any earlier work. Our quenched QCD analysis had three
degenerate states (within errors):G2u , Hu andG1u. That pattern had two possible interpretations:
a single spin7

2
−

state or an accidental degeneracy of a spin5
2
−

state and a spin12
−

state.
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Figure 1: The nucleon spectrum obtained for each symmetry channel for243×64N f = 2 lattice QCD data
at mπ = 400 MeV. Errors are indicated by the vertical size of the box.
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