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1. Introduction

Quantum Monte Carlo simulations of lattice QCD yield correlation functions (lattice QCD
data)D(τ) as a function of imaginary timeτ = it. The real frequency spectral functions (SPFs) are
then extracted from the correlation functions since SPFs ofQCD contain physical information of
hadrons such as masses, decay rates, etc. In this paper, we used MEM to extract ground and first
excited states of some hadrons. MEM has been showed to be ableto extract hadronic excited states
with considerable success [1, 2, 3]. Zero temperature quenched lattice QCD data with overlap
fermion are used in this study.

2. MEM

We follow Asakawa, et al. [2] in briefly outlining MEM as they already discussed it in detail.
This method adopts Bryan’s method [2, 4], which is thought tobe the state-of-the-art MEM. The
relationship between dataD(τ) and SPFA(ω) at zero momentum is,

D(τ) =

∫ ∞

0
dω A(ω)K(τ ,ω) (2.1)

whereK(τ ,ω) is the kernel of the case in study. This is an inverse problem since we seekA(ω) for
givenD(τ). The method in extractingA(ω) is outlined below.

2.1 Method

Basicaly what MEM does is infer the most probable imageA from a given dataD. The theo-
retical basis for MEM is Bayes’ theorem in probability

P[X |Y ] =
P[Y |X ]P[X ]

P[Y ]
(2.2)

whereP[X |Y ] is the conditional probability ofX givenY . Let us rewrite the above in terms of our
variables: letD be the lattice QCD data andH be the prior knowledge, e.g.,A(ω ≥ 0) ≥ 0. The
conditional probability (also called the posterior probability) of SPF A(ω) given the dataD and
prior knowledgeH is then

P[A|DH] =
P[D|AH]P[A|H]

P[D|H]
(2.3)

P[D|AH] is called the likelihood function[1]

P[D|AH] =
1

ZL
e−L (2.4)

whereL = 1
2χ2. P[D|H] a normalization constant independent ofA. To maximize the posterior

probability P[A|DH], two independent parametersα andm are inserted into the prior probability
P[A|H]

P[A|H]→ P[A|Hα m] =
1
ZS

eαS (2.5)
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whereS is the Shannon-Jaynes entropy

S[A] =

∫ ∞

0

[

A(ω)−m(ω)−A(ω) log
( A(ω)

m(ω)

)]

dω →
Nω

∑
i=1

[

Ai −mi −Ai log
( Ai

mi

)]

(2.6)

whereNω ∼ 103 is the number of pixels into which the frequency is equally discretized to∆ω . We
look for a solutionA that maximizes the posterior probability

P[A|DHα m] ∝ eQ(A)
, Q(A) ≡ αS−L. (2.7)

Real and positive functionm(ω) called thedefault model is introduced into the prior probabil-
ity. The intermediary parameterα controls the relative weight of the entropyS, which pullsA to
fit the default modelm), and it will be integrated out in the end. The likelihood function L on the
other hand pullsA to fit the lattice dataD. The default model used ism ≡ m0ωn (n=2(5) for meson
(baryon)). The parameterm0 may be determined either by the perturbative asymptotic behavior of
SPF at largeω , m(ω → large), or by requiring that the resultant imageAout has the least error.

MEM is able to reconstructA(ω) and determine its statistical error. The error ofA(ω)out is
averaged over an intervalI = [ωmin,ωmax]. The average ofA for a givenα over intervalI is defined
as

〈Aα〉I ≡

∫

[dA]
∫

I dω A(ω)P[A|DHα m]W (ω)
∫

I dω W (ω)
≃

∫

I dωAα(ω)W (ω)
∫

I dωW (ω)
=

∫

I dωAα(ω)
∫

I dω
(2.8)

whereW (ω) is a weight function and taken to be unity. It is also assumed that the posterior
probability P[A|DHα m] is highly peaked aroundAα(ω) which is true for good data. This fact is
also used to approximate the variance of〈Aα〉I , δA(ω) = A(ω)−Aα(ω), as

〈(δAα)2〉I =

∫

[dA]
∫

I×I dω dω ′ δA(ω)δA(ω ′)P[A|DHα m]
∫

I×I dω dω ′
(2.9)

≃
−

∫

I×I dω dω ′
(

δ 2Q
δA(ω)δA(ω ′)

)−1

A=Aα
∫

I×I dω dω ′
(2.10)

Therefore the error forAout in the regionI is given by

〈(δAout)
2〉I ≡

∫

dα 〈(δAα)2〉I P[α |DHm] (2.11)

which is shown as vertical bars in Fig. 2, 3, 4, and 5.

2.2 Testing MEM

Mock data were used to test how well MEM could produce sharp peaks and continuum given
different quality of data. Our test results [5] agree very closely with Asakawa et al. [2]. Due to
the limitation of space, only one test is presented here. As an example, we extractedAout(ω) =

ω2ρout(ω) from mock data, which consist of three Gaussian peaks of different widths. Figure 1
shows how well MEM works when the data get less noisy. Parameter b adjusts the noise level of
the mock data andN is the number of time slices (N=30.) It is clear that as noise increases, the
output image quality deteriorates as evidenced by the decreasing number of peaks reproduced and
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Figure 1: Test of MEM sensitivity to noise.b is the noise level,N is the number of temporal data points,
andr = ∑Nω

i=1[ρout(ωi)−ρin(ωi)]
2 is defined as the distance betweenρin andρout to measure how well the

output matches the input.ρin is dashed blue andρout is solid red. Left: All 3 peaks are reproduced. Middle:
2 out of 3 peaks are reproduced. Right: Only 1 broad peak is visible

the increasing valur ofr. Noise turns out to be the most dominant factor influencing the quality
of the output SPF. The more noisy the data get, the less information MEM produces to a point of
unreliability. The next factors are the number of temporal data pointsN and lattice spacinga which
are discussed in Ref. [2]. Good quality data with low noise are crucial in getting reliable results
from MEM.

3. Results and discussion

The data we analyze are obtained from the Iwasaki gauge action and overlap fermion action [6]
in theχQCD collaboration [7]. All data (except for pion) are of size203×32 with lattice spacing
a ∼ 0.17 fm and large lattice sizeLa = 3.4 fm (β = 6.0 andκ = 0.1530). The number of gauge
configurations isNconf = 110. The data for pion are of size 123×28 with lattice spacinga ∼ 0.20
fm, lattice sizeLa = 2.4 fm (β = 6.0 andκ = 0.1530), andNconf = 300. The pion masses are
approximately 175, 186, 197, 208, 223, 242, 264, 293, 327, 359, 391, 426, 466, 512, 566, 625,
681, 717, 752, 813, 899, 961, 1006, 1152, 1291, and 1547 MeV. Only results with successful
extraction of first excited states are shown in this paper.

In general meson results contain much more noise than baryonresults for both the ground and
first excited states. Fig. 2 shows the results for pions andK∗. The results for the last several lightest
quarks in the pion case are not reliable enough to be included. In theK∗ case, we can see clearly
the trend of how the data points approach the physical point.

We obtained better results with baryons than with mesons. Fig. 3,4,5 show the results forΛ, Σ,
Ξ, ∆, N, N ′, andN∗ Again, aside fromN ′ andN∗, all data points approach the physical points very
well. In the case ofΞ in Fig. 4, the MEM data points approach 2.0 GeV value which is apossible
indication ofΞ(1950).

Fig. 5 shows that the masses ofN∗(1535) are slightly higher than those of the Roper reso-
nanceN ′(1440) for lighter quark masses (0.4 < mπ < 0.6 GeV) which is consistent with observed
spectra. However, this order is switched where the masses ofN∗(1535) become lower than those
of N ′(1440) for heavier quark masses in 0.6 < mπ < 1.0 GeV region. This is not only consistent
with a previous study of excited nucleons in Ref. [3] about level ordering of these two states, but it
also clarifies their level ordering.
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Figure 2: Ground and first excited states of pion andK∗ as a function of the square of the pion mass in the
physical unit. The experimental values are marked by empty symbols.

Figure 3: Ground and first excited states of OctetΛ and OctetΣ

Figure 4: Ground and first excited states of OctetΞ and Decuplet∆
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Figure 5: Nucleon.

4. Conclusion

We tested and used MEM for mock data and lattice QCD data. MEM is shown to be able
to extract and study the ground and first excited states of some light hadrons in quenched LQCD
with some success. In this study factors that limit MEM ability to produce SPF is noise and lattice
spacing. We have not done chiral extrapolation with a curve fit to the physical point since the
results are not refined enough. However, the data points approach their respective physical points
quite well. Greater number of configurations of correlationfunctions with finer lattices and better
actions that reduce more noise are needed to perform the chiral extrapolation reliably.
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