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1. Introduction

Lattice QCD is now established as a precision tool for cakiohs of the properties of ‘gold-
plated’ hadrons. This enables us to test QCD at a much maonget level than is possible for
‘QCD-inspired’ models and is a necessary prerequisiteust tiattice QCD in more speculative
calculations. It also enables us to determine accurat&ypdrameters of the Standard Model
related to quarks, including quark masses, the strong rmupbnstant and elements of the CKM
matrix.

Recently it has become possible to handle charm quarksatebuin lattice QCD using the
Highly Improved Staggered Quark (HISQ) action [1] and thdsilsian additional new dimension
to this programme. Since charm quarks straddle the regiowelea light quark physics and heavy
quark physics, special care must be taken. With the HIS@ractharm quarks are treated in the
same way as light quarks and this has a number of advantagesssed below. Our recent results
on charm-light decay constants [2] show the power of thig@ggh with results of comparable
accuracy to those from light-light decay constants. Funtasults in charm physics are described
in Section 2 and then a new method for determining the chaarkquass (to 1%) using our results.
Preliminary results on the determinationmf using the same method along with numerical results
with the NRQCD action fob quarks are also given. An update on the determinatioasdfom
Wilson loops completes section 3. The conclusions incleassmmary plot of the current status
of the gold-plated meson spectrum from lattice QCD. All a@gb results use Bayesian methods to
allow a unified treatment of systematic errors from unknovghér order terms in fitting functions.
Ignoring these terms clearly underestimates their effectuding them enables much more robust
extrapolations and error estimates. How to do this is deedrin the Appendix.

2. Charm physicswith HISQ quarks

Charm quarks are heavy, but not very heavy, and this makdsce I®CD approach to them
difficult. A heavy quark treatment effectively removes thass as a dynamical scale, and thereby
the discretisation errors linked to it. A light quark treatm allows the determination of the mass
from the energy at zero momentum and, given an action witligmahiral symmetry, conserved
currents that do not need renormalisation. As latticesiinedner and finer, the charm quark mass
in lattice units becomes smaller and the advantages ofrtigeabharm quarks as light relativistic
quarks become more apparent. For example, on the MILC sopegfisemblea(~ 0.06fm) m.a
is around 0.3, which is clearly much less than 1. The key issubat of discretisation errors.
These will appear as powers wka and can be extrapolated away, given results at enough values
of a. However, if they are large i.e. low powers wga are present, so that a large extrapolation
is necessary, they will cause significant errors in the peleded result. For a value af.a = 0.4,
tree-level errors afm.a)? could cause a 20% error amd(m.a)? a 6% error. It is therefore very
important to use a highly improved action, in which thesengerare removed, for an accurate
continuum extrapolation.

The HISQ action has been developed with exactly these issuagd. It includes a further
application of the ‘Fat7’ type gluon-link smearing beyortt used in the improved staggered
(asqtad) action. As for that action it includes the improeetrof the derivative using the Naik 3-
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Figure 1. The difference in mass between the goldstone pseudoscaldaha next lightest taste, which is
the local nongoldstone generated from the local tempoial amrrent forss (ns) andct (n¢) and a variety
of staggered actions. HISQ is the Highly Improved Staggé&redrk action and HISQ2 and HISQ3 include
one or two further levels of Fat7 smearing and associateditegisation and adjustment of the Lepage
discretisation correction.

link term which removes tree-levef errors. For charm quarks the coefficient of the Naik term is
further tuned nonperturbatively in HISQ to give 1 as the gdlr the ‘speed of light’. This removes
the leading (in terms of the velocity of the charm quark ieside meson) terms at(m.a)? and
(mea)?. Further details are given in [1].

The HISQ action is a staggered action and so has multiplee&asf quarks and mesons made
from them, whose differences vanish as- 0. One test of potential discretisation errors from
‘taste-changing’ effects is to study the mass splittingsvben different tastes of pseudoscalar
meson. These effects show up there and are very small elsewhilhe spectrum. Figure 1 shows
the splitting between the ‘goldstong; and ns and the next lightest meson (which is made with
the local temporal axial current) as a function of latticea@pg. The taste-splitting is smaller
for charmonium than for strange-onium because the massaigdreand both are clearly falling
rapidly with a®>. We also show the taste-splittings with actions called ®2Sand ‘HISQ3' in
which further applications of the Fat7 smearing are mads.dkear that the taste-splittings can be
reduced to negligible levels, even on quite coarse lattiwéh this procedure.

The HISQ action has enough chiral symmetry for conservetbvemd partially conserved
axial vector currents so that matrix elements can be catulilan the lattice with no need for renor-
malisation. This removes a major source of systematic.efitoe HISQ action is also numerically
very fast and so accurate results can be obtained quickhg wsiriance reduction techniques such
as the ‘random wall’ previously used for light quarks [3]. ¥Weorrelators using a Bayesian multi-
exponential approach [2] taking account of oscillatingestdor the charm-light case (they are not
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present for charmonium). The appendix describes the Bayegiproach in general terms. The
form for the fitting function including normal (even) and dksding (odd) states is

G(t) = Y ea(—1)" (e M + e M(T) (2.1)

We generally take our ground state energies and amplitudes fits that include 4 normal (and
4 oscillating if appropriate) exponentials. By this stabe fit results and errors are stable as a
function of the number of exponentials, so it is irrelevdmhore are added.

We have tuned the charm quark mass in the HISQ action usingdhistonen. mass on
very coarse, coarse and fine MILC ensembles including 2+branf sea quarks with the asqgtad
action and various light quark masses. The scale is detednising MILCr; /a values [4] and
takingr; = 0.321 fm [5]. We will also include here in some plots prelimyaesults from the
MILC superfine (0.0036/0.018) ensemble. By combining HIS@rm quark propagators with
light valence HISQ quarks we obtained accurate resulthntass of th® andDs mesons in [2].
These masses have no free parameters beoausas already tuned from thg, and they provide
a very strong test that charmonium and charm-light physi¢&ndled simultaneously correctly in
lattice QCD. Thinking of charm quarks as heavy quarks malkissat non-trivial test, not met by
any continuum model of these systems.

Our results for thed and Dg decay constants, made in 2007, have caused a lot of interest
this year following new results from CLEO-c [6, 7]. We calatd the decay constant from the
matrix element of the partially conserved axial currentha standard way used fdy; and fx.
Discretisation errors are somewhat largerdgiDs than forrr/K but clearly still under good control
and extrapolation to the continuum limit from 3 values of latice spacing gives a 2% accurate
result. Again we use Bayesian methods for a combined chirdlc@ntinuum extrapolation as
described in the appendix. F&r mesons the chiral extrapolation is significant; [y mesons
there is very little physical sea quark mass dependencexpested. The decay constant is the
guantity calculable in QCD that parameterises the antibilaate of charged pseudoscalars to W
bosons and thereby to leptons. Experimentalists can tlserdatermine decay constants from the
decay rate to leptons given a value for the appropriate CKévheht from elsewhere. CLEO-c
do this for theD and Ds mesons (measuring the rate eithente or to Tv and applying a small
correction for electromagnetic effects) uswvig= Vg andVyq = Vis. Their new value foifp agrees
well with our predicted result, their value fdp, disagrees at the level ob3whereo is dominated
by the experimental error coming from limited statistics.

Figure 2 shows a compilation of lattice results for the decaystants, including an update
from FNAL/MILC [8] and a new value frooms = 2 calculations by ETMC [9]. Also included
are the new results from CLEO-c this year [6, 7], and oldeultsson fp, from BaBar [10] and
Belle [11]. There is clearly tension between the latticaultssfor fp, and the experimental ones.
This is the first time that lattice QCD has disagreed with expent on a gold-plated quantity, and
over 15 such quantities have now been calculated accuradeklxamples see figure 7. It could be
a harbinger of new physics [12]. At the very least it requiggsryone to check their results and
errors thoroughly.

To this end, as well as running at a fourth superfine lattieeisy, we have been examining
other gold-plated quantities in charm physics calculalsieagithe HISQ action. Figure 3 shows a
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Figure 2: A comparison of lattice results for ti2andDs decay constant and experimental results obtained
from the leptonic decay rate using CKM eleme¥igs andVyy from elsewhere. The FNAL/MILC results
have been updated this year by [8] and the ETMC results areanevdescribed in [9]. They include only

2 flavours of sea quarks, so are not directly comparable toethdts above. There is agreement between
lattice and experiment fofip, but not for fp,.

calculation of the decay constant of two vector mesonsyjtlaad thep. The decay constant can
be extracted from the experimental leptonic width using

AT f2
r— ?aéEDeéRV (2.2)

We compare results using different tastes of vector mesmegl' and (taste-singlet) ‘1-link’. Nei-
ther is the conserved current and so the lattice results dée renormalised to compare to ex-
periment. For the charmonium case this was done ‘nonpettiueby’ (i.e. using only continuum
perturbation theory and not lattice perturbation theorgkimg use of current-current correlators as
described in the next section. For tip¢he renormalisation was done using 1-loop lattice perturba
tion theory, which apparently has small coefficients in th8®lcase. Agreement with experiment
is clear, work is ongoing on the error budget.

3. Determination of me, my and ag

The accurate determination of quark masses is importasefgaral continuum QCD calcula-
tions. This is particularly true of thie andc quark masses whose uncertainty strongly affects the
determination, for example, &, from inclusiveB — mrdecays. The limitation on this determi-
nation from standard lattice QCD methods is often the matrifriom the lattice bare mass to a
continuum scheme such B&S If lattice perturbation theory is used, a 2-loop deterrtioraof the
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Figure 3: Results for the decay constant for the veator(J/) andss () using currents of different
taste. Thay case is renormalised ‘nonperturbatively’ using resuttsfthe comparison of the correlators to
continuum perturbation theory. Thgcase is renormalised using one-loop lattice QCD pertushatieory

(no error is included for unknown higher orders in the reralisation in this plot because such an error is
correlated between the points at different lattice spgciNg dependence on the light sea quark mass is seen
in either of these quantities, as expected.

matching factor must be done and this is hard. Neverthelessueaging results can be obtained in
the case of the charm quark using the HISQ action [13].

Here we describe a new method which takes a very differentoapp. It requires a com-
parison of the continuum extrapolation of zero-momentuttickacharmonium correlators to high
order continuum QCD perturbation theory, and the work wasedo collaboration with Chetyrkin,
Kihn, Steinhauser and Sturm who performed the continuuouledions [14]. The comparison is
done through theth ‘time-moments’ of the correlators (defined below) whietm ®e related tath
derivatives with respect i, evaluated af = 0, of the polarisation function of an external current
coupled to a heavy quark loop. This latter quantity is calbld in continuum perturbation theory,
provided thamn is not too large. Our results are most accurate for the gmgspseudoscalan()
correlator. We can simply multiply by the square of the bdrarm mass to define an ultra-violet
finite unrenormalised (because of the PCAC relation) ctitarrent correlator:

G(t) =a’y (amoc)” < 0]js(%,) j5(0,0)/0 > (3.1)
X

and calculate time-moments as:

n= Z(t/a)"G(t)- (3.2)
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Heret goes from T /2 to +T /2 on the lattice. The comparison to the continuum then besome

On(Ogs(1), /)
(ame(p))=4 -

whereg, is known through third-order i for low values ofn (4, 6 and 8). The approach to the
continuum limit is improved if tree level discretisatiorr@ns are removed. This is done by dividing
by the tree level result on both sides of eq 3.3. The tree latte result is simply obtained by
calculating in the free case. Tuning errorsnip and scale setting errors are also ameliorated by
multiplying by factors of the latticg. mass. Then the continuum extrapolation is actually done for

Gn(a=0) = (3.3)

— amp, ( Gn )1/(n—4) (34)

B 2am(Ff2|e£ Gl

for n > 6. Forn = 4 there are no factors of. in eq. 3.3, so we cannot use this to obtaig but
as can be determined as described below. Extrapolation ofetieced time-momentg;, to the
continuum limit again uses Bayesian methods (see appendix)

Rn(@) = Rn(0)(1+ c1as(ame)? + coas(ame)? 4 caas(ame ) + - -- (3.5)

We also include dependence on the sea quark masses whicledglaghte effect and is omitted
here for clarity. Having 4 values of the lattice spacing fror@6fm (MILC superfine) to 0.15fm
(MILC very coarse) enables a very accurate continuum résilé obtained. The ratio ofi. to the
experimentah. mass is determined for different valuesmidising:

. rn(aM_Sau/rnC)
R0 = ome()/my,

wherery is g, from eq. 3.3 divided by the continuum tree level result. A 1f&lffierror is obtained
by averaging results from = 6 andn = 8. The error is dominated by uncertainties in the scale
setting and in the perturbation theory. Further detailgasen in [14], which includes also determi-
nations ofm. from temporal axial and vector currents and a full error idgigure 4, from [14],
summarises the results. Our final numbemig3GeV) = 0.986(10)GeV. This method has been
previously applied [15] to determin@. to 1% using experimental data &f{e*e~ — hadrons.
The continuum result is:(3GeV) = 0.986(13)GeV. The fact that the lattice and continuum de-
terminations ofm; agree at this level of precision is a strong statement abowtwell we can
handle charm quarks in lattice QCD using the HISQ action.

Another application of these techniques is for the ‘nortypeative’ determination of renor-
malisation factors for the cases where a nonconservedntusreised in the correlator. Different
moments have the sanZefactors, but different powers afi. appear. It is therefore possible, by
taking ratios of adjacent moments to appropriate powersolateZ. These factors were used in
the calculation of the leptonic width of thz above.

Since the 4th moment has no powerswfit is possible to relate its continuum extrapolation
directly to a perturbative expression and use this to determs. We can do this also, but less
accurately, for the ratios of powers of the 6th and 8th momehbsen to cancel powers wE.
The value we obtain in th®1S scheme isas(Mz) = 0.1174(12), in good agreement with other
determinations. More details are given in [14].

(3.6)
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Figure 4: me(u) for u = 3 GeV andns = 4 flavours, from different moments of correlators builtrfro
four different lattice operators. Top left is the local (dsione) pseudoscalar, top right the local temporal
axial vector and bottom left and right are the ‘1-link’ vecctmd local vector respectively. The grey band is
0.986(10) GeV, which comes from the first two moments of tlralpseudoscalar.
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Figure 5: Results form, is theMS scheme at its own scale obtained from moments of vedfpcirrent-
current correlators in lattice NRQCD matched to continumyrbation theory as described in the text. The
shaded band is 4.18(4) GeV. At smalthe errors are dominated by relativistic and discretisegizors and

at largen by nonperturbative uncertainties.

The method of moments of current-current correlators cem la¢ applied to extracihy, from
Y and ny, correlators using NRQCD quarks on the MILC configurations [16]. Now there is no
conserved current in the annihilation channel and so rafiosoments must be taken to eliminate
the factors oZ. Moments for small values of suffer from discretisation and relativistic correc-
tions, but the region of validity of the perturbative cabtion extends to larger values f A tree
level analysis of lattice results, compared to tree levBI@QLCD, is useful in understanding the
systematic errors. Figure 5 shows preliminary resultsnfgifrom Y correlators. It seems likely
that we can achieve a 1-2% result fog from this method. Work is ongoing.

Because the HISQ action is an appropriate action for lightkgitoo, we can take advantage
of cancellations of systematic errors in ratios of charmngjtias to light ones. This allows us to
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Figure 6: The ratio of the bare lattice charm quark mass (taken as ¢leddwel pole mass [1]) to the bare
lattice strange quark mass using the HISQ action and var@mit. HISQ2 (double hisq) and HISQ3 (treble
hisq) are described in the text. Matching factors to theioomnMS masses cancel in this ratio and allow
an accuratens to be determined.

leverage accuracy in light quark quantities from our chaesults (and is therefore, it turns out,
a very useful alternative to the more traditional approaichsing the same action for charm and
bottom and leveraging accuracy in bottom physics from cH&tim

Figure 6 shows the ratio of the charm quark mass to the strafggined with HISQ, HISQ2
and HISQ3 actions on the MILC configurations. The matchintheMS scheme cancels in this
ratio, when extrapolated ta= 0. We are in the process of using this for an alternative ateur
determination ofns. There are clear discretisation errors in the ratio in th8@lktase and these
are significantly reduced with the more highly smeared astié\gain work on this is ongoing.

Finally, we give an update to the determinationogffrom lattice QCD using the perturba-
tive expansion of 22 small Wilson loops or loop ratios [17hidlis improved from our previous
determination [18] in a number of ways and obtains a resulthvts slightly more accurate and
1o higher at 0.1184(9). Our new result includes determinatiom 5 values of the lattice spac-
ing (adding the MILC superfine and very coarse) and makes ugedVILC r;i/a values to fix
the ratios of lattice spacings between different ensemhla® accurately. We have also fitted the
nonperturbative chiral corrections, ie. the light sea Rumass dependence of the logs of the Wil-
son loops. This is a small effect but certainly required g/ dlata when using results at multiple
sea quark masses and lattice spacing values. The formullagfidog of a small Wilson loop then
becomes

log(W) =% caay (d/a)(1+ cma(2m +mg) +---). (3.7)

The measured ensemble average value on the MILC ensembigsrited on the left and the equa-
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tion inverted to obtairry (d/a). The scale for, d/ais set using the BLM prescription, modified
where necessary [19]c1, ¢; andcz are known from the numerical evaluation of Feynman dia-
grams in lattice QCD perturbation theocy,. .. c1p are constrained from our Bayesian analysis (see
appendix) which fits results for a particular [©g) from the 5 different lattice spacings using a
commonay, which runs perturbatively between the different scales. ané able to constrain the
higher order terms somewhat more accurately than in ouiique\calculation because of having
the additional superfine results, and these are largelpnsgmge for the shift upwards of our num-
ber. The inclusion of unknown higher order terms is necgsfaran accurate analysis, and the
Bayesian approach allows us both to parameterise our anugrabout them as well as allowing
the data to constrain them where it can. They give sizeabitecitons and without them a poor fit
would be obtained across the multiple lattice spacings. Bdygesian fit also allows us to include
uncertainties in the scale (both statistical and systeatid analyse the effect of gluon conden-
sates of various kinds. Further details are given in [17]e 8lso [20] for a somewhat different
analysis of the perturbation theory for a subset of the Wilsops and which gives a result in good
agreement.

Note the difference in methodology between the two deteatiuns ofas that we give here.
The first (moments of current-current correlators) usesamtly which is defined in the contin-
uum and has lattice artefact (discretisation) errors whicist be extrapolated away before being
compared with continuum perturbation theory. The seconthlsWilson loops) uses a quantity
defined on the lattice and calculated in lattice perturlmaticeory which includes all lattice arte-
facts, order by order itry. Discretisation errors only enter here through the presehsuch errors
in the quantity used for scale setting in the scaledigr The second method then has an advantage
provided that lattice perturbation theory can be done tt leigough order, and our errors reflect
this.

4. Conclusions

Precision lattice QCD calculations continue to produceahle results, building on [21], and
we give new examples here. With the advent of the HISQ actibarm physics has become an
excellent testing ground for lattice QCD and QCD. The aanumaf b physics now needs to be
improved to the same level and work on this is ongoing [224uFeé 7 shows the current status of
the gold-plated meson spectrum from HPQCD calculations.
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Appendix : Constrained Fitsand Error Budgets

Constrained fitting, with Bayesian priors, is the most t#8atool for analyzing systematic
errors associated with correlator fits and continuum, tlainal other extrapolations that involve
a large or infinite number of increasingly unimportant tef2®)]. Fitting lattice results to a chi-
ral expansion truncated at next-to-leading order, to takédely used example, provides little
unambiguous information about the potential impact of argbrder terms in the expansion. In a
constrained fit, an arbitrary number of higher-order terarshme included and their potential impact
on systematic errors easily quantified.

The key to constrained fitting lies in the Bayesian priorg #a included in theg(? function
that is minimized in the fit. Typically one is trying to fit a sgftdata points, say; + oy, at points
X; for i =1...Ny (for example, simulation results for correlators as a fiomcbf t or values for
R, defined in eq. 3.4 or lagV) for different lattice spacings), to a functigiix;c) that depends
upon a set of fit parameterg for j = 1...N; (for example, amplitudes and masses in the sum
of exponentials in eq. 2.1 or coefficients of the powergaf)? in eq. 3.5 or ofay(d/a) or
a(2m +mg) in eq. 3.7). A complication arises when in princigig is infinite, but in practice
only the first fewc;s contribute appreciably. We usually can estimate rougbly many terms are
needed, because we have prior knowledge about the ordergrfituade of thecjs. The challenge
is to incorporate systematically this prior knowledge ittie fitting process so that the impact of
unimportant or marginally important terms can be relialdgessed and quantified.

This information enters a constrained fit through the Bayrepriors for the fit parameters. In
such a fit, we vary the fit parametersto minimize an augmenteg function,

. . a))2
x2e) =y IOy 5 502, @.1)
| Y; ]
where there is one priofxczj for every fit parameter. The priors incorporate our priorigalge
about the fitting parameters. Typically one uses a Gaussian p

SxXe = (& —Gi)” — i) (4.2)

G

to constrain the fit parametey to the vicinity ofcj + o, .
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The meart; and widtha,, encode our prior knowledge about fit parameterThe data being
fit will have a lot to say about some parameters, and almostimgpto say about others. In the
former case, where a parameter is very sensitive to the wlsially the fit result for that parameter
has an uncertainty that is much smaller than the width ofrite,pand both the mean and standard
deviation that come out of the fit are almost independent ®itiean and standard deviation that
went into the prior. In the other extreme, where the datarigels insensitive to a parameter, the
mean and standard deviation that come out of the fit are ajppately equal to the mean and
standard deviation put into the prior. In the first case, the djives us new information beyond
what we put into the priors (that is, beyond what we knew leetiming the fit); in the second case,
the data adds nothing to our knowledge about the parametenteters of the second kind, which
have little relevance to the data, are good examplegslicince parameters in statistics.

Bayesian analysis provides a logically coherent frameviorkhis kind of analysis [23]. Its
power lies in the fact that we can include an arbitrary nundfgrarameters without destabilizing
the fit. This is as it should be. If a set of parameters is imaié because their corresponding terms
in y(x;c) are negligible, we should be free to include them or not in r@adyesis. It should make
no difference. If they are marginally important it should/&a marginal impact on the fit. This is
precisely the situation when proper priors are included.

As one addgjs in the fitting function, the quality of the fit should initialimprove (that is
x? decrease), and usually the errors on fit results increasenti&ally, however, neither the fit nor
the errors change when further parameters are added. Tthie @oint at which the parameters
become insensitive to the data (usually because the datsusiciently accurate to resolve them).
This typically occurs around the point whexé/Ny falls below one. It is important to add terms
up to the point where further terms don’t change the resalisthat systematic errors are not
underestimated. Terms can be added beyond this point bt ihéttle merit in this since they
have no effect on fit results (means or errors).

Means and standard deviations for the fit parameters, amtidas of them, are obtained from
the minimumy? in the usual fashion. It is often useful to decompose ther exgdor for some fit
resultg(c) into component parts. When errors are small (as here), tﬁmmag is approximately
linear in the variances that appear in the various termsdry ffunction:

02~ dyo?+ Y dy 2. (4.3)
I ]

The first sum, for example, is the contribution to the errog(o) coming from statistical errors
in the data. The second sum is the contribution from uncwitai in the fit function. This sort
of information is obviously very useful when thinking abaotprovements to an analysis —for
example, in deciding how much improvement would come frottebestatistics for the data.

To isolate the part of the total erroy that comes from, for example, the statistical uncertainty
in all the;s, the fit is rerun but with the corresponding variances inythéunction rescaled by a
factor f close to one{ = 1.1 or 1.01, for example):

o? — fog (4.4)

fori=1...Ny. Then
oy(f)2 - 2(f=1)
f—1

~ Y dyoy. (4.5)
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The square root of this quantity is the part of the total etfiat comes from statistical uncertainties
in theY,. This procedure can be repeated for each prior or group ofgin the x? function,
thereby generating a complete error budget forgt®. The sum of the variances obtained in this
way for each part of the total error should equél if it does not, errors may not be small enough
to justify the linear approximation in 43

Most of the uncertainties in a standard lattice analysisbegpushed into the constrained fit, to
facilitate consistent treatment of all systematic andstteal errors. For example, the independent
variablesX; might have errorsX; = X; & gx,.. The determination of the lattice spacing will typically
have a systematic error that grows with the lattice spadiagdan be taken into account this way,
for example. We do this in the analysis of Wilson loops todey since no continuum limit
is taken there but the systematic errors in the comparisetales between ensembles is very
important. Another example is that of chiral extrapolatising quark masses, where the quark
masses have to be run to a common scale and will thereforeslgate@matic errors associated with
them. In these cases we treat exchs another fit parameter, to be varied in the fit, and include th
following priors in thex? function:

)¢ (4.6)

XN
Il
™M

> oy

One of the outputs from the fit might be improved values forxthe
There are usually a variety of other parameters that inttederrors into a lattice analysis.

For example, we take the lattice spacing from MILC datarfgia and use oul” determination of

r1 [5, 16]. Each of these has errors. Ting/a); for each data set and the ovenallare all treated as

fit variables when we fit our lattice data to a function thatetegs on the lattice spacing, and each
has a prior:

N2
(03 5)yry

2
Of;

oxX=Y (4.7)

I 0(2"1/a)i

Here(ri/a); andoy, /5, are taken from MILC results, while, + gy, = 0.321(5) fm.

Any quantity that enters the analysis and has uncertairgigsated as a fit parameter, with a
prior that incorporates whatever is known about that gtyanin this way all uncertainties can be
analyzed simultaneously within a single constrained fit.

10ccasionally the difference in 4.5 comes out negative. @hisd be caused by instabilities in the fit, in which case
changingf might change the sign. It is possible, however, for one ottefficients in 4.3 to be negative. In such cases
we use the absolute value of 4.5 for the variance.
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