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1. Introduction

Lattice QCD is now established as a precision tool for calculations of the properties of ‘gold-
plated’ hadrons. This enables us to test QCD at a much more stringent level than is possible for
‘QCD-inspired’ models and is a necessary prerequisite to trust lattice QCD in more speculative
calculations. It also enables us to determine accurately the parameters of the Standard Model
related to quarks, including quark masses, the strong coupling constant and elements of the CKM
matrix.

Recently it has become possible to handle charm quarks accurately in lattice QCD using the
Highly Improved Staggered Quark (HISQ) action [1] and this adds an additional new dimension
to this programme. Since charm quarks straddle the region between light quark physics and heavy
quark physics, special care must be taken. With the HISQ action charm quarks are treated in the
same way as light quarks and this has a number of advantages, discussed below. Our recent results
on charm-light decay constants [2] show the power of this approach with results of comparable
accuracy to those from light-light decay constants. Further results in charm physics are described
in Section 2 and then a new method for determining the charm quark mass (to 1%) using our results.
Preliminary results on the determination ofmb using the same method along with numerical results
with the NRQCD action forb quarks are also given. An update on the determination ofαs from
Wilson loops completes section 3. The conclusions includesa summary plot of the current status
of the gold-plated meson spectrum from lattice QCD. All of these results use Bayesian methods to
allow a unified treatment of systematic errors from unknown higher order terms in fitting functions.
Ignoring these terms clearly underestimates their effect;including them enables much more robust
extrapolations and error estimates. How to do this is described in the Appendix.

2. Charm physics with HISQ quarks

Charm quarks are heavy, but not very heavy, and this makes a lattice QCD approach to them
difficult. A heavy quark treatment effectively removes the mass as a dynamical scale, and thereby
the discretisation errors linked to it. A light quark treatment allows the determination of the mass
from the energy at zero momentum and, given an action with enough chiral symmetry, conserved
currents that do not need renormalisation. As lattices become finer and finer, the charm quark mass
in lattice units becomes smaller and the advantages of treating charm quarks as light relativistic
quarks become more apparent. For example, on the MILC superfine ensemble (a ≈ 0.06fm)mca
is around 0.3, which is clearly much less than 1. The key issueis that of discretisation errors.
These will appear as powers ofmca and can be extrapolated away, given results at enough values
of a. However, if they are large i.e. low powers ofmca are present, so that a large extrapolation
is necessary, they will cause significant errors in the extrapolated result. For a value ofmca = 0.4,
tree-level errors at(mca)2 could cause a 20% error andαs(mca)2 a 6% error. It is therefore very
important to use a highly improved action, in which these terms are removed, for an accurate
continuum extrapolation.

The HISQ action has been developed with exactly these issuesin mind. It includes a further
application of the ‘Fat7’ type gluon-link smearing beyond that used in the improved staggered
(asqtad) action. As for that action it includes the improvement of the derivative using the Naik 3-
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Figure 1: The difference in mass between the goldstone pseudoscalar and the next lightest taste, which is
the local nongoldstone generated from the local temporal axial current forss (ηs) andcc (ηc) and a variety
of staggered actions. HISQ is the Highly Improved StaggeredQuark action and HISQ2 and HISQ3 include
one or two further levels of Fat7 smearing and associated reunitarisation and adjustment of the Lepage
discretisation correction.

link term which removes tree-levela2 errors. For charm quarks the coefficient of the Naik term is
further tuned nonperturbatively in HISQ to give 1 as the value for the ‘speed of light’. This removes
the leading (in terms of the velocity of the charm quark inside the meson) terms atαs(mca)2 and
(mca)4. Further details are given in [1].

The HISQ action is a staggered action and so has multiple ‘tastes’ of quarks and mesons made
from them, whose differences vanish asa → 0. One test of potential discretisation errors from
‘taste-changing’ effects is to study the mass splittings between different tastes of pseudoscalar
meson. These effects show up there and are very small elsewhere in the spectrum. Figure 1 shows
the splitting between the ‘goldstone’ηc andηs and the next lightest meson (which is made with
the local temporal axial current) as a function of lattice spacing. The taste-splitting is smaller
for charmonium than for strange-onium because the mass is heavier and both are clearly falling
rapidly with a2. We also show the taste-splittings with actions called ‘HISQ2’ and ‘HISQ3’ in
which further applications of the Fat7 smearing are made. Itis clear that the taste-splittings can be
reduced to negligible levels, even on quite coarse lattices, with this procedure.

The HISQ action has enough chiral symmetry for conserved vector and partially conserved
axial vector currents so that matrix elements can be calculated on the lattice with no need for renor-
malisation. This removes a major source of systematic error. The HISQ action is also numerically
very fast and so accurate results can be obtained quickly using variance reduction techniques such
as the ‘random wall’ previously used for light quarks [3]. Wefit correlators using a Bayesian multi-
exponential approach [2] taking account of oscillating states for the charm-light case (they are not
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present for charmonium). The appendix describes the Bayesian approach in general terms. The
form for the fitting function including normal (even) and oscillating (odd) states is

G(t) = ∑
n

cn(−1)nt(e−Mnt + e−Mn(T−t)) (2.1)

We generally take our ground state energies and amplitudes from fits that include 4 normal (and
4 oscillating if appropriate) exponentials. By this stage the fit results and errors are stable as a
function of the number of exponentials, so it is irrelevant if more are added.

We have tuned the charm quark mass in the HISQ action using thegoldstoneηc mass on
very coarse, coarse and fine MILC ensembles including 2+1 flavors of sea quarks with the asqtad
action and various light quark masses. The scale is determined using MILCr1/a values [4] and
taking r1 = 0.321 fm [5]. We will also include here in some plots preliminary results from the
MILC superfine (0.0036/0.018) ensemble. By combining HISQ charm quark propagators with
light valence HISQ quarks we obtained accurate results for the mass of theD andDs mesons in [2].
These masses have no free parameters becausemc was already tuned from theηc and they provide
a very strong test that charmonium and charm-light physics is handled simultaneously correctly in
lattice QCD. Thinking of charm quarks as heavy quarks makes this a non-trivial test, not met by
any continuum model of these systems.

Our results for theD and Ds decay constants, made in 2007, have caused a lot of interest
this year following new results from CLEO-c [6, 7]. We calculate the decay constant from the
matrix element of the partially conserved axial current in the standard way used forfπ and fK .
Discretisation errors are somewhat larger forD/Ds than forπ/K but clearly still under good control
and extrapolation to the continuum limit from 3 values of thelattice spacing gives a 2% accurate
result. Again we use Bayesian methods for a combined chiral and continuum extrapolation as
described in the appendix. ForD mesons the chiral extrapolation is significant; forDs mesons
there is very little physical sea quark mass dependence, as expected. The decay constant is the
quantity calculable in QCD that parameterises the annihilation rate of charged pseudoscalars to W
bosons and thereby to leptons. Experimentalists can then also determine decay constants from the
decay rate to leptons given a value for the appropriate CKM element from elsewhere. CLEO-c
do this for theD andDs mesons (measuring the rate either toµν or to τν and applying a small
correction for electromagnetic effects) usingVcs =Vud andVcd =Vus. Their new value forfD agrees
well with our predicted result, their value forfDs disagrees at the level of 3σ whereσ is dominated
by the experimental error coming from limited statistics.

Figure 2 shows a compilation of lattice results for the decayconstants, including an update
from FNAL/MILC [8] and a new value fromn f = 2 calculations by ETMC [9]. Also included
are the new results from CLEO-c this year [6, 7], and older results on fDs from BaBar [10] and
Belle [11]. There is clearly tension between the lattice results for fDs and the experimental ones.
This is the first time that lattice QCD has disagreed with experiment on a gold-plated quantity, and
over 15 such quantities have now been calculated accurately, for examples see figure 7. It could be
a harbinger of new physics [12]. At the very least it requireseveryone to check their results and
errors thoroughly.

To this end, as well as running at a fourth superfine lattice spacing, we have been examining
other gold-plated quantities in charm physics calculable using the HISQ action. Figure 3 shows a
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Figure 2: A comparison of lattice results for theD andDs decay constant and experimental results obtained
from the leptonic decay rate using CKM elementsVcs andVcd from elsewhere. The FNAL/MILC results
have been updated this year by [8] and the ETMC results are newand described in [9]. They include only
2 flavours of sea quarks, so are not directly comparable to theresults above. There is agreement between
lattice and experiment forfD, but not for fDs .

calculation of the decay constant of two vector mesons, theψ and theφ . The decay constant can
be extracted from the experimental leptonic width using

Γ =
4π
3

α2
QEDe2

Q
f 2
V

mV
(2.2)

We compare results using different tastes of vector meson, ‘local’ and (taste-singlet) ‘1-link’. Nei-
ther is the conserved current and so the lattice results had to be renormalised to compare to ex-
periment. For the charmonium case this was done ‘nonperturbatively’ (i.e. using only continuum
perturbation theory and not lattice perturbation theory) making use of current-current correlators as
described in the next section. For theφ the renormalisation was done using 1-loop lattice perturba-
tion theory, which apparently has small coefficients in the HISQ case. Agreement with experiment
is clear, work is ongoing on the error budget.

3. Determination of mc, mb and αs

The accurate determination of quark masses is important forseveral continuum QCD calcula-
tions. This is particularly true of theb andc quark masses whose uncertainty strongly affects the
determination, for example, ofVub from inclusiveB → π decays. The limitation on this determi-
nation from standard lattice QCD methods is often the matching from the lattice bare mass to a
continuum scheme such asMS. If lattice perturbation theory is used, a 2-loop determination of the
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Figure 3: Results for the decay constant for the vectorcc (J/ψ) and ss (φ ) using currents of different
taste. Theψ case is renormalised ‘nonperturbatively’ using results from the comparison of the correlators to
continuum perturbation theory. Theφ case is renormalised using one-loop lattice QCD perturbation theory
(no error is included for unknown higher orders in the renormalisation in this plot because such an error is
correlated between the points at different lattice spacing). No dependence on the light sea quark mass is seen
in either of these quantities, as expected.

matching factor must be done and this is hard. Nevertheless encouraging results can be obtained in
the case of the charm quark using the HISQ action [13].

Here we describe a new method which takes a very different approach. It requires a com-
parison of the continuum extrapolation of zero-momentum lattice charmonium correlators to high
order continuum QCD perturbation theory, and the work was done in collaboration with Chetyrkin,
Kühn, Steinhauser and Sturm who performed the continuum calculations [14]. The comparison is
done through thenth ‘time-moments’ of the correlators (defined below) which can be related tonth
derivatives with respect toq0, evaluated atq2 = 0, of the polarisation function of an external current
coupled to a heavy quark loop. This latter quantity is calculable in continuum perturbation theory,
provided thatn is not too large. Our results are most accurate for the goldstone pseudoscalar (ηc)
correlator. We can simply multiply by the square of the bare charm mass to define an ultra-violet
finite unrenormalised (because of the PCAC relation) current-current correlator:

G(t) ≡ a6∑
~x

(am0,c)
2 < 0| j5(~x, t) j5(0,0)|0 > (3.1)

and calculate time-moments as:

Gn = ∑
t
(t/a)nG(t). (3.2)

6
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Heret goes from -T/2 to +T/2 on the lattice. The comparison to the continuum then becomes

Gn(a = 0) =
gn(αMS(µ),µ/mc)

(amc(µ))n−4 . (3.3)

wheregn is known through third-order inαs for low values ofn (4, 6 and 8). The approach to the
continuum limit is improved if tree level discretisation errors are removed. This is done by dividing
by the tree level result on both sides of eq 3.3. The tree levellattice result is simply obtained by
calculating in the free case. Tuning errors inmc and scale setting errors are also ameliorated by
multiplying by factors of the latticeηc mass. Then the continuum extrapolation is actually done for

Rn ≡
amηc

2am(0)
pole,c

(
Gn

G(0)
n

)1/(n−4) (3.4)

for n ≥ 6. Forn = 4 there are no factors ofmc in eq. 3.3, so we cannot use this to obtainmc, but
αs can be determined as described below. Extrapolation of the reduced time-moments,Rn, to the
continuum limit again uses Bayesian methods (see appendix):

Rn(a) = Rn(0)(1+ c1αs(amc)
2 + c2αs(amc)

4 + c3αs(amc)
6 + · · · (3.5)

We also include dependence on the sea quark masses which has negligible effect and is omitted
here for clarity. Having 4 values of the lattice spacing from0.06fm (MILC superfine) to 0.15fm
(MILC very coarse) enables a very accurate continuum resultto be obtained. The ratio ofmc to the
experimentalηc mass is determined for different values ofn using:

Rn =
rn(αMS,µ/mc)

2mc(µ)/mηc

(3.6)

wherern is gn from eq. 3.3 divided by the continuum tree level result. A 1% final error is obtained
by averaging results fromn = 6 andn = 8. The error is dominated by uncertainties in the scale
setting and in the perturbation theory. Further details aregiven in [14], which includes also determi-
nations ofmc from temporal axial and vector currents and a full error budget. Figure 4, from [14],
summarises the results. Our final number ismc(3GeV) = 0.986(10)GeV. This method has been
previously applied [15] to determinemc to 1% using experimental data onR(e+e− → hadrons).
The continuum result ismc(3GeV) = 0.986(13)GeV. The fact that the lattice and continuum de-
terminations ofmc agree at this level of precision is a strong statement about how well we can
handle charm quarks in lattice QCD using the HISQ action.

Another application of these techniques is for the ‘non-perturbative’ determination of renor-
malisation factors for the cases where a nonconserved current is used in the correlator. Different
moments have the sameZ factors, but different powers ofmc appear. It is therefore possible, by
taking ratios of adjacent moments to appropriate powers, toisolateZ. These factors were used in
the calculation of the leptonic width of theψ above.

Since the 4th moment has no powers ofmc it is possible to relate its continuum extrapolation
directly to a perturbative expression and use this to determine αs. We can do this also, but less
accurately, for the ratios of powers of the 6th and 8th moments chosen to cancel powers ofmc.
The value we obtain in theMS scheme isαs(MZ) = 0.1174(12), in good agreement with other
determinations. More details are given in [14].

7
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Figure 4: mc(µ) for µ = 3 GeV andn f = 4 flavours, from different moments of correlators built from
four different lattice operators. Top left is the local (goldstone) pseudoscalar, top right the local temporal
axial vector and bottom left and right are the ‘1-link’ vector and local vector respectively. The grey band is
0.986(10) GeV, which comes from the first two moments of the local pseudoscalar.
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Figure 5: Results formb is theMS scheme at its own scale obtained from moments of vector (ϒ) current-
current correlators in lattice NRQCD matched to continuum perturbation theory as described in the text. The
shaded band is 4.18(4) GeV. At smalln the errors are dominated by relativistic and discretisation errors and
at largen by nonperturbative uncertainties.

The method of moments of current-current correlators can also be applied to extractmb from
ϒ andηb correlators using NRQCDb quarks on the MILC configurations [16]. Now there is no
conserved current in the annihilation channel and so ratiosof moments must be taken to eliminate
the factors ofZ. Moments for small values ofn suffer from discretisation and relativistic correc-
tions, but the region of validity of the perturbative calculation extends to larger values ofn. A tree
level analysis of lattice results, compared to tree level full QCD, is useful in understanding the
systematic errors. Figure 5 shows preliminary results formb from ϒ correlators. It seems likely
that we can achieve a 1-2% result formb from this method. Work is ongoing.

Because the HISQ action is an appropriate action for light quarks too, we can take advantage
of cancellations of systematic errors in ratios of charm quantities to light ones. This allows us to
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Figure 6: The ratio of the bare lattice charm quark mass (taken as the tree level pole mass [1]) to the bare
lattice strange quark mass using the HISQ action and variants on it. HISQ2 (double hisq) and HISQ3 (treble
hisq) are described in the text. Matching factors to the continuumMS masses cancel in this ratio and allow
an accuratems to be determined.

leverage accuracy in light quark quantities from our charm results (and is therefore, it turns out,
a very useful alternative to the more traditional approach of using the same action for charm and
bottom and leveraging accuracy in bottom physics from charm[8])

Figure 6 shows the ratio of the charm quark mass to the strange, obtained with HISQ, HISQ2
and HISQ3 actions on the MILC configurations. The matching tothe MS scheme cancels in this
ratio, when extrapolated toa = 0. We are in the process of using this for an alternative accurate
determination ofms. There are clear discretisation errors in the ratio in the HISQ case and these
are significantly reduced with the more highly smeared actions. Again work on this is ongoing.

Finally, we give an update to the determination ofαs from lattice QCD using the perturba-
tive expansion of 22 small Wilson loops or loop ratios [17]. This is improved from our previous
determination [18] in a number of ways and obtains a result which is slightly more accurate and
1σ higher at 0.1184(9). Our new result includes determinationfrom 5 values of the lattice spac-
ing (adding the MILC superfine and very coarse) and makes use of the MILC r1/a values to fix
the ratios of lattice spacings between different ensemblesmore accurately. We have also fitted the
nonperturbative chiral corrections, ie. the light sea quark mass dependence of the logs of the Wil-
son loops. This is a small effect but certainly required by the data when using results at multiple
sea quark masses and lattice spacing values. The formula forthe log of a small Wilson loop then
becomes

log(W ) = ∑
n,m

cnαn
V (d/a)(1+ cma(2ml + ms)+ · · ·). (3.7)

The measured ensemble average value on the MILC ensembles isinserted on the left and the equa-
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tion inverted to obtainαV (d/a). The scale forα , d/a is set using the BLM prescription, modified
where necessary [19].c1, c2 andc3 are known from the numerical evaluation of Feynman dia-
grams in lattice QCD perturbation theory,c4 . . .c10 are constrained from our Bayesian analysis (see
appendix) which fits results for a particular log(W ) from the 5 different lattice spacings using a
commonαV , which runs perturbatively between the different scales. We are able to constrain the
higher order terms somewhat more accurately than in our previous calculation because of having
the additional superfine results, and these are largely responsible for the shift upwards of our num-
ber. The inclusion of unknown higher order terms is necessary for an accurate analysis, and the
Bayesian approach allows us both to parameterise our uncertainty about them as well as allowing
the data to constrain them where it can. They give sizeable corrections and without them a poor fit
would be obtained across the multiple lattice spacings. TheBayesian fit also allows us to include
uncertainties in the scale (both statistical and systematic) and analyse the effect of gluon conden-
sates of various kinds. Further details are given in [17]. See also [20] for a somewhat different
analysis of the perturbation theory for a subset of the Wilson loops and which gives a result in good
agreement.

Note the difference in methodology between the two determinations ofαs that we give here.
The first (moments of current-current correlators) uses a quantity which is defined in the contin-
uum and has lattice artefact (discretisation) errors whichmust be extrapolated away before being
compared with continuum perturbation theory. The second (small Wilson loops) uses a quantity
defined on the lattice and calculated in lattice perturbation theory which includes all lattice arte-
facts, order by order inαV . Discretisation errors only enter here through the presence of such errors
in the quantity used for scale setting in the scale forαV . The second method then has an advantage
provided that lattice perturbation theory can be done to high enough order, and our errors reflect
this.

4. Conclusions

Precision lattice QCD calculations continue to produce valuable results, building on [21], and
we give new examples here. With the advent of the HISQ action,charm physics has become an
excellent testing ground for lattice QCD and QCD. The accuracy of b physics now needs to be
improved to the same level and work on this is ongoing [22]. Figure 7 shows the current status of
the gold-plated meson spectrum from HPQCD calculations.
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Appendix : Constrained Fits and Error Budgets

Constrained fitting, with Bayesian priors, is the most reliable tool for analyzing systematic
errors associated with correlator fits and continuum, chiral and other extrapolations that involve
a large or infinite number of increasingly unimportant terms[23]. Fitting lattice results to a chi-
ral expansion truncated at next-to-leading order, to take awidely used example, provides little
unambiguous information about the potential impact of higher-order terms in the expansion. In a
constrained fit, an arbitrary number of higher-order terms can be included and their potential impact
on systematic errors easily quantified.

The key to constrained fitting lies in the Bayesian priors that are included in theχ2 function
that is minimized in the fit. Typically one is trying to fit a setof data points, sayYi ±σYi at points
Xi for i = 1. . .NY (for example, simulation results for correlators as a function of t or values for
Rn defined in eq. 3.4 or log(W ) for different lattice spacings), to a functiony(x;c) that depends
upon a set of fit parametersc j for j = 1. . .Nc (for example, amplitudes and masses in the sum
of exponentials in eq. 2.1 or coefficients of the powers of(amc)

2 in eq. 3.5 or ofαV (d/a) or
a(2ml + ms) in eq. 3.7). A complication arises when in principleNc is infinite, but in practice
only the first fewc js contribute appreciably. We usually can estimate roughly how many terms are
needed, because we have prior knowledge about the order of magnitude of thec js. The challenge
is to incorporate systematically this prior knowledge intothe fitting process so that the impact of
unimportant or marginally important terms can be reliably assessed and quantified.

This information enters a constrained fit through the Bayesian priors for the fit parameters. In
such a fit, we vary the fit parametersc j to minimize an augmentedχ2 function,

χ2(c) = ∑
i

(Yi − y(Xi;c))2

σ2
Yi

+∑
j

δ χ2
c j

, (4.1)

where there is one priorδ χ2
c j

for every fit parameter. The priors incorporate our prior knowledge
about the fitting parameters. Typically one uses a Gaussian prior,

δ χ2
c j

=
(c j − c j)

2

σ2
c j

, (4.2)

to constrain the fit parameterc j to the vicinity ofc j ±σc j .
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The meanc j and widthσc j encode our prior knowledge about fit parameterc j. The data being
fit will have a lot to say about some parameters, and almost nothing to say about others. In the
former case, where a parameter is very sensitive to the data,usually the fit result for that parameter
has an uncertainty that is much smaller than the width of its prior, and both the mean and standard
deviation that come out of the fit are almost independent of the mean and standard deviation that
went into the prior. In the other extreme, where the data is largely insensitive to a parameter, the
mean and standard deviation that come out of the fit are approximately equal to the mean and
standard deviation put into the prior. In the first case, the data gives us new information beyond
what we put into the priors (that is, beyond what we knew before doing the fit); in the second case,
the data adds nothing to our knowledge about the parameter. Parameters of the second kind, which
have little relevance to the data, are good examples ofnuisance parameters in statistics.

Bayesian analysis provides a logically coherent frameworkfor this kind of analysis [23]. Its
power lies in the fact that we can include an arbitrary numberof parameters without destabilizing
the fit. This is as it should be. If a set of parameters is irrelevant because their corresponding terms
in y(x;c) are negligible, we should be free to include them or not in an analysis. It should make
no difference. If they are marginally important it should have a marginal impact on the fit. This is
precisely the situation when proper priors are included.

As one addsc js in the fitting function, the quality of the fit should initially improve (that is
χ2 decrease), and usually the errors on fit results increase. Eventually, however, neither the fit nor
the errors change when further parameters are added. This isthe point at which the parameters
become insensitive to the data (usually because the data is insufficiently accurate to resolve them).
This typically occurs around the point whereχ2/NY falls below one. It is important to add terms
up to the point where further terms don’t change the results,so that systematic errors are not
underestimated. Terms can be added beyond this point but there is little merit in this since they
have no effect on fit results (means or errors).

Means and standard deviations for the fit parameters, and functions of them, are obtained from
the minimumχ2 in the usual fashion. It is often useful to decompose the error σg for for some fit
resultg(c) into component parts. When errors are small (as here), the varianceσ2

g is approximately
linear in the variances that appear in the various terms in the χ2 function:

σ2
g ≈ ∑

i
dYiσ

2
Yi

+∑
j

dc j σ
2
c j

. (4.3)

The first sum, for example, is the contribution to the error ing(c) coming from statistical errors
in the data. The second sum is the contribution from uncertainties in the fit function. This sort
of information is obviously very useful when thinking aboutimprovements to an analysis — for
example, in deciding how much improvement would come from better statistics for the data.

To isolate the part of the total errorσg that comes from, for example, the statistical uncertainty
in all theYis, the fit is rerun but with the corresponding variances in theχ2 function rescaled by a
factor f close to one (f = 1.1 or 1.01, for example):

σ2
Yi
→ f σ2

Yi
(4.4)

for i = 1. . .NY . Then
σg( f )2−σ2

g ( f =1)

f −1
≈ ∑

i

dYiσ
2
Yi
. (4.5)
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The square root of this quantity is the part of the total errorthat comes from statistical uncertainties
in the Yi. This procedure can be repeated for each prior or group of priors in theχ2 function,
thereby generating a complete error budget for theg(c). The sum of the variances obtained in this
way for each part of the total error should equalσ2

g ; if it does not, errors may not be small enough
to justify the linear approximation in 4.31.

Most of the uncertainties in a standard lattice analysis canbe pushed into the constrained fit, to
facilitate consistent treatment of all systematic and statistical errors. For example, the independent
variablesXi might have errors:Xi = X i±σXi . The determination of the lattice spacing will typically
have a systematic error that grows with the lattice spacing that can be taken into account this way,
for example. We do this in the analysis of Wilson loops to derive αV since no continuum limit
is taken there but the systematic errors in the comparison ofscales between ensembles is very
important. Another example is that of chiral extrapolationusing quark masses, where the quark
masses have to be run to a common scale and will therefore havesystematic errors associated with
them. In these cases we treat eachXi as another fit parameter, to be varied in the fit, and include the
following priors in theχ2 function:

δ χ2
X = ∑

i

(

Xi −X i
)2

σ2
Xi

. (4.6)

One of the outputs from the fit might be improved values for theXi.
There are usually a variety of other parameters that introduce errors into a lattice analysis.

For example, we take the lattice spacing from MILC data forr1/a and use ourϒ determination of
r1 [5, 16]. Each of these has errors. The(r1/a)i for each data set and the overallr1 are all treated as
fit variables when we fit our lattice data to a function that depends on the lattice spacing, and each
has a prior:

δ χ2
a = ∑

i

(

(r1/a)i − (r1/a)i

)2

σ2
(r1/a)i

+
(r1− r1)

2

σ2
r1

. (4.7)

Here(r1/a)i andσ(r1/a)i
are taken from MILC results, whiler1±σr1 = 0.321(5) fm.

Any quantity that enters the analysis and has uncertaintiesis treated as a fit parameter, with a
prior that incorporates whatever is known about that quantity. In this way all uncertainties can be
analyzed simultaneously within a single constrained fit.

1Occasionally the difference in 4.5 comes out negative. Thiscould be caused by instabilities in the fit, in which case
changingf might change the sign. It is possible, however, for one of thecoefficients in 4.3 to be negative. In such cases
we use the absolute value of 4.5 for the variance.
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