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1. The Generalized Eigenvalue Problem

1.1 History

At a conference in 1981, K. Wilson suggested to use a variational technique to compute energy
levels in lattice gauge theory [1]. The idea was picked up andapplied to the glueball spectrum [2,3]
and to the static quark potential(s) [4]. With a certain choice of the variational basis{φi , i = 1. . .N}

and maximizing〈φ |e−(t−t0)Ĥ |φ〉/〈φ |φ〉 with |φ〉 = ∑i αi |φi〉, the variational technique yields the
generalized eigenvalue problem (GEVP). It is applicable beyond the computation of the ground-
state energy and has been widely used, but rarely in the form where it can be shown that corrections
to the true energy levels decrease exponentially for large time [5].

Apart from [5], statements about corrections due to higher energy levels seem to be absent in
the literature. We here add such statements and suggest a somewhat different use of the GEVP,
which we will show to be more efficient under certain conditions. We also treat the case of an
effective theory and show numerical results for heavy-quark effective theory (HQET).

1.2 Basic idea

We start from a matrix of correlation functions on an infinite-time lattice

Ci j (t) = 〈Oi(0)O j(t)〉 =
∞

∑
n=1

e−Entψniψn j , i, j = 1, . . . ,N (1.1)

ψni ≡ (ψn)i = 〈n|Ôi |0〉 En ≤ En+1 .

For simplicity we assume realψni. States|n〉 with 〈m|n〉 = δmn are eigenstates of the transfer
matrix and all energies have the vacuum energy subtracted.O j(t) are any gauge-invariant fields on
a timeslicet that correspond to Hilbert-space operatorsÔ j whose quantum numbers are then also
carried by the states|n〉. Besides the energy levelsEn one may want to determine a matrix element

p0n = 〈0|P̂|n〉 (1.2)

of an operatorP̂ that may or may not be in the set of operators
{

Ôi
}

. Starting from the GEVP,

C(t)vn(t, t0) = λn(t, t0)C(t0)vn(t, t0) , n = 1, . . . ,N t > t0, (1.3)

Lüscher and Wolff showed that [5]

En = lim
t→∞

Eeff
n (t, t0) , Eeff

n (t, t0) =
1
a

log
λn(t, t0)

λn(t +a, t0)
. (1.4)

For a while we now assume that onlyN states contribute,

Ci j (t) = C(0)
i j (t) =

N

∑
n=1

e−Entψniψn j . (1.5)

We introduce the dual (time-independent) vectorsun, defined by(un,ψm) = δmn, m,n≤ N , with
(un,ψm) ≡ ∑N

i=1(un)i ψmi. Inserting into eq. (1.5) gives

C(0)(t)un = e−Entψn , C(0)(t)un = λ (0)
n (t, t0)C(0)(t0)un . (1.6)
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So the GEVP is solved by

λ (0)
n (t, t0) = e−En(t−t0) , vn(t, t0) ∝ un (1.7)

and there is an orthogonality for allt of the form

(um,C(0)(t)un) = δmnρn(t) , ρn(t) = e−Ent . (1.8)

These equations mean that the operatorsQ̂n = ∑N
i=1(un)iÔi ≡ (Ô,un) create the eigenstates|n〉 =

Q̂n|0〉 of the Hamilton operator:̂H|n〉= En |n〉 . Consequently we havep0n = 〈0|P̂|n〉= 〈0|P̂Q̂n|0〉,
which, preparing for a generalization, we may rewrite as

p0n =
N

∑
j=1

〈P(t)O j(0)〉(un) j =
∑N

j=1 〈P(t)O j(0)〉vn(t, t0) j

(vn(t, t0) , C(t)vn(t, t0))
1/2

λn(t0 + t/2, t0)
λn(t0 + t, t0)

, (1.9)

while for all t, t0 we haveEeff
n (t, t0) = En .

Let us now come back to the general case eq. (1.1). The idea is to solve the GEVP, eq. (1.3),
“at large time” where the contribution of statesn > N is small and obtain matrix elements and
energy levels from

Eeff
n =

1
a

log
λn(t, t0)

λn(t +a, t0)
= En+ εn(t, t0) (1.10)

peff
0n =

∑N
j=1 〈P(t1)O j(0)〉(vn(t, t0)) j

(vn(t, t0) , C(t2)vn(t, t0))
1/2

λn(t0 + t2/2, t0)
λn(t0 + t1, t0)

= p0n + πn(t, t0) at t1 = t2 = t . (1.11)

The restriction tot1 = t2 = t is for simplicity. The correctionsεn,πn will disappear at large times.
Note that in the literature the energy levels are often not extracted in this way. Rather, the standard
effective masses of correlators made fromQn = (O,vn(t, t0)) are used, and the question of the size
of the corrections is left open. However, the form in eq. (1.10) has a theoretical advantage as it was
shown in [5] that (at fixedt0)

εn(t, t0) = O(e−∆En t) , ∆En = min
m6=n

|Em−En| . (1.12)

This is non-trivial as it allows to obtain the excited levelswith corrections that vanish in the limit
of large t, keepingt0 fixed. However, it appears from this formula that the corrections can be
very large when there is an energy level close to the desired one. This is the case in interesting
phenomena such as string breaking [6,7], where in numericalapplications the corrections appeared
to be very small despite the formula above1. Also in static-light systems the gaps are typically only
around∆En ≈ 400MeV, and in full QCD with light quarks a small gap∆En ≈ 2mπ appears in some
channels.

Our contribution to the issue is a more complete discussion of the correctionεn to En as well
as a discussion of the correctionsπn to the matrix elements. It turns out that a very useful case is
to consider the situation

t ≤ 2t0 , (1.13)

1In fact a different formula was claimed in [6].
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e.g. witht − t0 = const. or 2≥ t/t0 = const., and then taket0 (in practice moderately) large. Then
it is not difficult to show that

εn(t, t0) = O(e−∆EN+1,nt) , ∆Em,n = Em−En , (1.14)

πn(t, t0) = O(e−∆EN+1,nt0) , at fixedt − t0 (1.15)

π1(t, t0) = O(e−∆EN+1,1t0e−∆E2,1(t−t0)) + O(e−∆EN+1,1t) . (1.16)

The large gaps∆EN+1,n can solve the problem of close-by levels for example in the string-breaking
situation, but also speed up the general convergence very much. For example in static-light systems
∆E6,1 ≈ 2GeV means that roughly a factor of 5 in time separation is gained. We now turn to an
outline of the proof of these statements.

2. Perturbation theory

We start from the solutions above forC =C(0) and treat the higher states as perturbations. This
perturbative evaluation was already set up by F. Niedermayer and P. Weisz a while ago [8] but never
published. We noted the advantage oft ≤ 2t0, the form of the corrections to the effective matrix
elements defined above and could show that these relations hold to all orders in the expansion.

We want to obtainλn andvn in a perturbation theory inε , where

Avn = λnBvn , A = A(0) + εA(1) , B = B(0) + εB(1) . (2.1)

We will set

A(0) = C(0)(t) , εA(1) = C(1)(t) , (2.2)

B(0) = C(0)(t0) , εB(1) = C(1)(t0) (2.3)

in the end. The solutions of the lowest-order equationA(0)v(0)
n = λ (0)

n B(0) v(0)
n satisfy an orthogo-

nality relation (v(0)
n ,B(0)v(0)

m ) = ρnδnm as in eq. (1.8) above. Writing

λn = λ (0)
n + ελ (1)

n + ε2λ (2)
n . . . , vn = v(0)

n + εv(1)
n + ε2v(2)

n . . . (2.4)

we get for the first two orders

A(0)v(1)
n +A(1)v(0)

n = λ (0)
n

[

B(0)v(1)
n +B(1)v(0)

n

]

+ λ (1)
n B(0)v(0)

n , (2.5)

A(0)v(2)
n +A(1)v(1)

n = λ (0)
n

[

B(0)v(2)
n +B(1)v(1)

n

]

+ λ (1)
n

[

B(0)v(1)
n +B(1)v(0)

n

]

+ λ (2)
n B(0)v(0)

n . (2.6)

With the orthogonality of the lowest-order vectors,v(0)
n , one obtains just like in ordinary QM

perturbation theory the solutions for eigenvalues and eigenvectors

λ (1)
n = ρ−1

n

(

v(0)
n ,∆nv(0)

n

)

, ∆n ≡ A(1)−λ (0)
n B(1) (2.7)

v(1)
n = ∑

m6=n

α(1)
nm ρ−1/2

m v(0)
m , α(1)

nm = ρ−1/2
m

(

v(0)
m ,∆nv(0)

n

)

λ (0)
n −λ (0)

m

(2.8)

λ (2)
n = ∑

m6=n

ρ−1
n ρ−1

m

(

v(0)
m ,∆nv(0)

n

)2

λ (0)
n −λ (0)

m

−ρ−2
n

(

v(0)
n ,∆nv(0)

n

)(

v(0)
n ,B(1)v(0)

n

)

. (2.9)

Also a recursion formula can be given for the higher-order coefficients.
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2.1 Application to the perturbations C(1)

Now we insert our specific problem eq. (2.2), eq. (2.3). With straightforward algebra and with
a representation (form> n)

(λ (0)
n −λ (0)

m )−1 = (λ (0)
n )−1(1−e−(Em−En)(t−t0))−1 = (λ (0)

n )−1
∞

∑
k=0

e−k(Em−En)(t−t0) , (2.10)

one finds the correction terms listed at the end of the first section. Initially this is so for the first two
orders, but the mentioned recursions allow to show that the higher orders are even more suppressed.

2.2 Effective theory to first order

In an effective theory, all correlation functions

Ci j (t) = Cstat
i j (t) + ω C1/m

i j (t) + O(ω2) (2.11)

are computed in an expansion in a small parameter,ω , which we consider to first order only. The
notation is taken from HQET whereω ∝ 1/m.

We start from the GEVP in the full theory, eq. (1.3), and use the form of the correction terms
of the effective energies (t ≤ 2t0)

Eeff
n (t, t0) = log

λn(t, t0)
λn(t +a, t0)

= En +O(e−∆EN+1,nt), (2.12)

see the discussion above. Expanding this equation inω , we have

Eeff,stat
n (t, t0) = a−1 log

λ stat
n (t, t0)

λ stat
n (t +a, t0)

= Estat
n + O(e−∆Estat

N+1,nt) , (2.13)

Eeff,1/m
n (t, t0) =

λ 1/m
n (t, t0)

λ stat
n (t, t0)

−
λ 1/m

n (t +a, t0)
λ stat

n (t +a, t0)
= E1/m

n + O(t e−∆Estat
N+1,nt) . (2.14)

Here O(t e−Et) is a summary for terms(b0 + b1t)e−Et. As expected for first-order perturbation
theory, only the eigenvectors of the static GEVP

Cstat(t)vstat
n (t, t0) = λ stat

n (t, t0)Cstat(t0)vstat
n (t, t0) , (2.15)

with normalization(vstat
m (t, t0) , Cstat(t0)vstat

n (t, t0)) = δmn, are needed in the formula

λ 1/m
n (t, t0) =

(

vstat
n (t, t0) , [C1/m(t)−λ stat

n (t, t0)C
1/m(t0)]v

stat
n (t, t0)

)

(2.16)

for the first-order corrections inω .
Similarly one may expand

peff
01 = peff,stat

01 + ω peff,1/m
01 +O(ω2)

peff,1/m
01 = p1/m

01 +O[e−∆Estat
N+1,1t0 e−∆Estat

2,1 (t−t0) (∆E1/m
N+1,1t0 + ∆E1/m

2,1 (t − t0))] (2.17)

and an explicit expression forpeff,1/m
01 is easily given. Again it involves only the solutions of the

lowest-order (inω) GEVP,vstat
n andλ stat

n , together with the first-order correlatorsC1/m. The large
energy gap∆EN+1,1 controls the corrections.
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3. Application to static-light Bs-mesons

We have carried out a test in quenched HQET, discretizing thestatic quark by the HYP2
action and the strange quark by the non-perturbatively O(a)-improved Wilson action. Space-time
is 2L× L3 with periodic boundary conditions,L ≈ 1.5fm and we consider two lattice spacings:
0.1fm and 0.07fm (β = 6.0219 and 6.2885), respectively withκ = 0.133849, 0.1349798. The
all-to-all strange-quark propagators [9] are constructedfrom 50 (approximate) low modes and two
noise fields on each timeslice of 100 configurations.

The gauge links entering in the interpolating fields are smeared with 3 iterations of (spatial)
APE smearing [10,11]. Then 8 different levels of Gaussian smearing [12] are applied to the strange-
quark field and we use a simpleγ0γ5 structure in Dirac space for all 8 interpolating fields. The local
field (no smearing) is included to compute the decay constant. The resulting 8× 8 correlation
function is first truncated to anN×N one projecting with theN eigenvectors ofC(ti) with the
largest eigenvalues. Hereti is taken to be roughly 0.2 fm (i.e.ti = 2a at β = 6.0219 and 3a at
β = 6.2885). WithN not too large, this avoids numerical instabilities and large statistical errors in
the GEVP [13]. We present our results for the spectrum and forthe decay constant below.
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Figure 1: The estimateaEeff,stat
n (t,t0), n = 1,2, as a function oft, for N = 2,3,4,5 from top to bottom ata = 0.07fm.

The curves areEn +αN e−∆EN+1,1 t (see comment about∆EN+1,1 in the text). The coefficientsαN are fitted for eachN.

Figure 1 shows the effective energies eq. (1.10) for the lowest two levels ata = 0.07fm. Sta-
tistical errors for the ground-state effective energy are below a level of about 3MeV for time sep-
arationst ≤ 1fm. Unexpectedly, these errors are roughly independent oft0 and ofN ≤ 5. The
functional form of the systematic corrections eq. (1.14) works very well down to surprisingly small
t and the independence oft0 is confirmed by the data. Since the corrections are well understood to
be below the MeV–level fort > 0.6fm,N ≥ 4, we may quote for exampleEstat

1 with a total error
of about 1MeV. We emphasize that what counts is of course the time separation in physical units.
The data at the coarser lattice spacing are very similar.

For this analysis, the energy gaps on the coarser lattice,a∆EN+1,1 ≈ 0.46,0.65,0.83, respec-
tively for N = 2,3,4, have been taken from plateaux ofaEeff,stat

n (t, t0) for N = 6. They have
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then been appropriately rescaled with the lattice spacing.A similar procedure has been used for
a∆EN+1,2.
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Figure 2: Bare effective static decay constant as a function oft0 for different values oft− t0 ata = 0.07fm. The curves
areF +αN e−∆EN+1,1 t0 (see comment about∆EN+1,1 in the text).

Figure 2 shows the effective decay constant, eq. (1.14), at the smaller lattice spacing. The
leading corrections again dominate at small time already. For N = 5 there is a rather early plateau
aroundt0 = 0.4fm, where both excited-state corrections are well below the % level and the sta-
tistical errors are around 0.7 %. The same statements hold for a = 0.10fm. Note that we fit the
corrections separately for eacht − t0 andN as a function oft0. The decay of the fit parametersαN

as a function oft − t0 is of the expected form eq. (1.16).

4. Conclusions

From a detailed analysis of the corrections to the eigen–values and vectors of the GEVP, it
becomes clear thatt0 should not be made too small. In particular ift0 ≥ t/2, the simple forms
eq. (1.14), eq. (1.15) can be shown. These corrections decayexponentially with the large gaps
EN+1−En. For first-order corrections in an effective theory a similar suppression holds, with the
energy differences of the lowest-order theory.

As pointed out to us at the conference, the authors of [14] studied the GEVP for a toy model
with ten states and noted that it is relevant to havet0 “large enough”. Fig.17 of [14] indeed illus-
trates that the effective energies become independent oft0 when (roughly)t0 ≥ t/2 is respected.
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