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Tests of Electric Polarizability on the Lattice

1. Introduction

Electric and magnetic polarizabilities characterize the rigidity of both charged and uncharged
hadrons in external fields and are important fundamental properties of particles. In particular, the
electric polarizability of a hadron characterizes the reaction of quarks to a weak external electric
field and can be measured by experiment via Compton scattering. These sorts of quantities can
be measured on the lattice[ 1] using background fields for neutral particles. We report here on the
ongoing work at Jefferson Lab by the “polar” collaboration to measure particle polarizabilities[2,
3,4].

It turns out there are many different ways of introducing an electric field on the lattice. Here
we discuss and present the results of various tests we have done in formulating a lattice quantum
chromodynamics (QCD) calculation of neutral hadron electric polarizabilities. We shall consider
the effects of periodic and fixed spatial boundary conditions, various types of quark sources and
the field linearization postulate. We also consider two ways of formulating the classical vector
potential for a uniform electric field from Maxwell’s equations along with the other possibilities.

Hadron polarizability on the lattice can be measured as a change in mass in a uniform, external
electric field, E. The appropriate way of writing this is

1
Sm = —Ea\E\Z, (1.1)

where « is the electric polarizability coefficient. This form is necessary in order to give an invariant
mass spectrum under the continuous Euclidean/Wick rotation, E — ¢9E. On the lattice, one looks
for a plateau in the effective mass shift plots vs. lattice time. Classical perturbation theory predicts
that a weak electric field should induce a negative mass shift on the lowest mass quantum state
from mixings with particles with higher mass but the same quantum numbers.

We have used a small number of configurations (20) to test out various sources, boundary
conditions and formulations. We are doing this in the context of the dynamical 2+1 CP-PACS
clover configurations[5]. We use a single mass, k,; = 0.13580 with x; = 0.13640 at § = 1.9 on
203 x 40 lattices (a = 0.098 +.002 fm). We include the electric field as a phase on the links which
affect the Wilson term but not the clover loops. The values of the phases used (see Eqgs.(2.1) and
(2.2) below) are 1 = 0.00036,—0.00072,0.00144, which can be combined to give two non-zero
electric field values for u and d quark charges. This allows us to investigate the [E|?> behavior. The
mass shifts used were symmetrized in the electric field direction,

1

Sm(E?) = =~ (8m(E) + dm(—E)). (1.2)

0 |

In some of the tests we used a volume or spatial plane quark source to study the signal strength.
Surprisingly, we found that this gave a good signal for the mesons but a poor or nonexistent one for
the baryons. It turns out that when using an extended interpolation field for a hadron, the electric
field phases will cancel on the sources for mesons but not for baryons. All of the results shown are
therefore with point interpolation quark fields. Because of space limitations, we will show results
only for the neutron mass shifts. (The neutral pion shifts are similar.)
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2. Classical U(1) Gauge Invariance

We start with the observation that two proposed ways of simulating a uniform electric field on

the lattice (“4" is the lattice time direction and we are simulating a field in the “1" direction),
Uy(n) — Ui (n)e™™, 2.1)
Us(n) — Uy(n)e™ M (2.2)

(n= eQEa®, Q =+1 /3,42/3, and n; and ns dimensionless) are connected in an exact “classical”
gauge invariant way in Wilson-type actions by the U (1) transformations,

Uy(n) — G(n)Uy(n)G™ ' (n+1), (2.3)
Ui(n) — G(n+Q)Uyu(n)G ' (n), (2.4)
y(n) — G(n)y(n), (2.5)
¥(n) — W(n)G ' (n), (2.6)

with the explicit form,
G(n) = =M™, 2.7)

as long as one uses Dirichlet boundary conditions in the n; and n4 directions for weak electric
fields. (Dirichlet or uncoupled time edges are the usual way of simulating zero temperature.) Such
non-periodic boundary conditions make a linear “box” in the 1-direction. One may also choose the

field quantization condition,
2
=== 2.8
n N’ (2.8)
where N is the number of points in the 1-direction, in which case periodic boundary conditions
may be used. For example, we may start with the links U;(n)e* and Uy(n). Choosing G(n) =
eMins this gives instead the links Uy (n) and Uy(n)e ™. These boundary conditions also allow

an arbitrary shifting of the origin of the phases, obviating a problem seen in Ref.[6].

3. Data Interpretation

Fig. 1 shows the results of a measurement of the effective mass shift on the neutron when the
weak field electric field is introduced as a full exponential phase factor as in Eqgs.(2.1) and (2.2).
We are using Dirichlet boundary conditions in the electric field and time directions. Note that we
see very good |E|? behavior in the results. Although it is not clear we have a plateau in lattice time,
the mass shift is seen to be positive, yielding a negative o from Eq.(1.2). We will comment on
this in the Discussion section below. In addition, the two ways of introducing the electric field in
Eqgs.(2.1) and (2.2) are consistent with one another up to machine convergence.

Fig. 2 shows the results when an electric field, quantized as in Eq.(2.8), is introduced for the
neutron. This time we use a periodic spatial boundary condition in the electric field direction and
the full exponential phase. Nevertheless, the results with the two formulations in Eqs.(2.1) and (2.2)
are still consistent. Again, a positive mass shift is seen. However, now the expected |E|?> behavior
is badly broken between our lowest field and second electric field shifts. We see the results rise
much too slowly to be consistent with |E|?.
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Figure 1: Point source results for effective mass shifts as a function of lattice time for the smallest electric
field for the neutron. The full exponential field was used with Dirichlet boundary conditions in the “1" and
time directions. Results are from time dependent spatial links (black symbols) or spatially dependent time
links (red symbols).
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Figure 2: Point source effective mass shifts as a function of lattice time for the smallest electric field for the
neutron. The full exponential field was used. The quantization condition, Eq.(2.8), was used with periodic
spatial boundary conditions and Dirichlet time boundary condition. Results are from time dependent spatial
links (black symbols) or spatially dependent time links (red symbols).
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Figure 3: Point source effective mass shifts as a function of lattice time for the smallest electric field for the
neutron. The full exponential field was used. The quantization condition, Eq.(2.8), was used with Dirichlet
boundary conditions in the “1" and time directions. The data are similar, but not identical, to Fig. 2. Results
are from time dependent spatial links (black symbols) or spatially dependent time links (red symbols).
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Figure 4: Point source effective mass shifts as a function of lattice time for the smallest electric field for
the neutron. The electric fields were linearized according to Eqgs.(3.1) and (3.2) with Dirichlet boundary
conditions in the “1" and time directions. Results are from time dependent spatial links (black symbols) or
spatially dependent time links (red symbols).
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Fig. 3 is much like Fig. 2, but uses Dirichlet boundary conditions in the electric field direction
instead of periodic boundary conditions. Although the numerical results are very similar to Fig. 2,
careful comparison shows that Figs. 2 and 3 are slightly different, as they should be. Nevertheless,
the two ways of putting in the electric field, Eqs.(2.1) and (2.2), agree very well with one another.
This measurement also suffers from non-|E|? behavior. Again, we will comment below on the
positive mass shifts.

Finally, we examine the effect of the field linearization postulate in Fig. 4. By this we mean
the replacement of the phase

e — (1+inny), (3.1)

in the U link case and
e MM (1 —inny), (3.2)

in the Uy link case. Everything else in the calculation was kept the same as in Fig. 1. Even though
the linear terms were kept quite small, one can see that the results are very different from before
and that the gauge invariance seen in the other figures is lost. We verified that these small field
mass shifts are, however, proportional to |[E|>. The mass shift for the electric field put in as a ny
dependent U link is negative, consistent with our previous determinations. The other formulation
using a n; dependent U, ink yields a much smaller mass shift.

4. Discussion

Superficially, the gauge invariance seen in Figs. 1, 2 and 3 would seem encouraging. However,
classically, we would expect a decreased rather than increased mass when the electric field is intro-
duced. In order to understand this effect, let us consider expanding the electric field U (1) phase to
second order in the action. We have

. 1
e —s (1+iagAy — E(an“>2)' (4.1)

Higher order terms will not contribute in the present case since we are examining an |E|? effect.
In Wilson-type actions, one can show that the linear A, term will couple to the exactly conserved
lattice vector current, J }f‘” . However, the Aﬁ term has no continuum action analog; it is the classical
analog of a “tadpole” term in the gauge action[7]. Inclusion of this term in the lattice simulations
will couple to the original gauge action, but with the gauge field link U; or Us replaced with
Ui (1 —3(nn4)?) or Us(1 — 3(nny)?), respectively. Thus, the links associated with the phases are
effectively reduced in magnitude. This means that all Green functions which use these links will
experience a reduced magnitude as a function of lattice time. When compared to the zero field
case, this effect will simulate a completely spurious increased mass[8].

The obvious way of avoiding the tadpole term is to linearize the phases. The linear field
results in Fig. 4 show, unfortunately, that the casualty is classical gauge invariance. The spatial link
result using Eq.(3.1) gives a negative effective mass shift as a function of lattice time, similar to
our previous measurements[3]. We also see that the time link result using Eq.(3.2) is inconsistent
with the spatial link measurement. However, these two ways of putting in the linear field in the
context of the 4-point polarizability function[9] are distinguished by the lattice physics involved.
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One may show that the position operator on the lattice introduces higher momentum states[10]. On
the other hand, the linear representation in Eq.(3.1) is an exact zero momentum object on the lattice
consistent with the desired measurement.

5. Conclusions

We have displayed an exact classical gauge invariance which connects two proposed exponen-
tial ways of formulating a uniform electric field and examined the effects of the fields in a lattice
simulation of electric polarizability. In the case of weak electric fields and Dirichlet boundary
conditions, we have verified the gauge invariance and seen positive neutron mass shifts. We have
also examined the effect of using a quantized electric field and seen that the results are classically
gauge invariant for periodic or “1" direction Dirichlet boundary conditions. However, we have seen
that the quantized results violate the weak field limit necessary to obtain the correct |E|> behav-
ior for electric polarizability. Moreover, we have argued that the positive mass shifts seen with
the full exponential representation have contributions from an incorrect classical tadpole term in
the electromagnetic U (1) field. The linearized U(1) links are free of the spurious tadpole term,
but unfortunately are no longer classically gauge invariant. Nevertheless, the representation of
the constant electric field using linearized U; links as in Eq.(3.1) results in a correct reduction in
the effective neutron mass and also correctly avoids introducing non-zero momenta in the lattice
measurement of electric polarizability.
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