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Two of recent progress in lattice QCD approach to nuclear force are reported. (i) Tensor force
from quenched lattice QCD: By truncating the derivative expansion of inter-nucleon potential to
the strictly local terms, we obtain central force VC

�
r � and tensor force VT

�
r � separately from s-

wave and d-wave components of Bethe-Salpeter wave function for two nucleon state with JP �
1 � . Numerical calculation is performed with quenched QCD on 324 lattice using the standard pla-
quette action at β � 5 � 7 with the standard Wilson quark action with κ � 0 � 1640 � 0 � 1665 � 0 � 1678.
Preliminary results show that the depths of the resulting tensor force amount to 20 to 40 MeV,
which is enhanced in the light quark mass region. (ii) Nuclear force from 2+1 flavor QCD with
PACS-CS gauge configuration: Preliminary full QCD results are obtained by using 2+1 flavor
gauge configurations generated by PACS-CS collaboration. The resulting potential has the mid-
ium range attraction of about 30 MeV similar to the preceding quenched calculations. However,
the repulsive core at short distance is significantly stronger than the corresponding quenched QCD
result.
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1. Introduction

Proton and neutron are the fundamental constituents of atomic nucleus. The interaction among
them are called as the nuclear force. Together with the structures of nuclei, the nuclear force itself
has been actively investigated in nuclear physics since its discovery about 75 yeas ago. Phenomeno-
logically, the properties of the nuclear force are characterized by the attraction at medium distance
with the OPEP tail [1, 2] and the strong repulsive core [3] at short distance. The former is respon-
sible for nuclei to be bound. The latter is important for various phenomena, such as the stability of
atomic nuclei, super nova explosions of type II, and the maximum mass of neutron star. While the
medium to long distance properties are accessible with the meson exchange picture, it is difficult
to approach the short distance properties. In particular, the origin of the repulsive core has not yet
been answered beyond phenomenological models. Since the nucleons overlaps at short distance,
the repulsive core is expected to reflect the internal structure of nucleon. Therefore, QCD is con-
sidered to be the best tool to reveal the short distance properties of the nuclear force. Indeed, one
attempted to study the repulsive core with lattice QCD by extending the method of static quark
potential [4]. However, the repulsive core was not reproduced from this pioneering work.

Recently, we have developed a new method to extract the nuclear force between nucleons
composed of non-static quarks and have found that essential features of the nuclear force are repro-
duced [5]. In this method, lattice QCD is used to generate the Bethe-Salpeter (BS) wave function
for a two nucleon state in the center of mass frame:

ψαβ 	�
x � 
y �� lim
t ��� 0

�
0 �� T � pα 	�
x � t  nβ 	�
y � 0 ����� NN ��� (1.1)

where pα � εabc � uT
a Cγ5db � uc;α and nβ � εabc � uT

a Cγ5db � dc;β denote interpolating fields for proton
and neutron, respectively. Note that this represents an amplitude to find three quarks at 
x and other
three quarks at 
y. At large separation, i.e., � 
x � 
y �! large, it shows a desirable asymptotic behavior,
which is characterized by the scattering phase shift δ 	 k  as

ψ 	"
r $# sin 	 kr % δ 	 k &
kr

%('&'&' for s-wave ) (1.2)

Here, k corresponds to the “asymptotic momentum” measured beyond the range of the interaction,

which is related to the total energy P0 of the state in Eq. (1.1) as P0 * 2 + m2
N % k2. The amplitude

Eq. (1.1) satisfies the effective Schrödinger equation as

	 
∇2 % k2  ψ 	"
r  * mN , d3r -VNN 	"
r � 
r -. ψ 	"
r -/0) (1.3)

(For derivation, see Ref. [6].) In the r.h.s., VNN plays the role of the interaction kernel. It is most
generally non-local, and can be defined to be independent of the total energy of the state [6]. After
the constraints from various symmetris are imposed, the derivative expansion leads us to

VNN 	"
r � 
r -  *21 VC 	 r 3% VT 	 r  S12 % VLS 	 r  
L ' 
S % O 	 ∇2 54 δ 	"
r � 
r - 0) (1.4)

Here, S12 � 3 	 
σ1 ' 
r  	 
σ2 ' 
r &6 r2 � 
σ1 ' 
σ2, 
L �7� i 
r 8 
∇, and 
S � 	 
σ1 % 
σ2 &6 2. VC 	 r  , VT 	 r  and
VLS 	 r  are referred to as “central force”, “tensor force”, and “LS force”. (Iso-spin dependence of
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these potentials are understood to be implicit.) These three forces play the most important role in
the conventional nuclear physics. By truncating Eq. (1.4) up to the first term, the central potential
VC 	 r;1 S0  and the effective central potential V eff

C 	 r;3 S1  have been calculated from quenched lat-
tice QCD [5]. The resulting potentials possess the repulsive core at short distance as well as the
attraction at medium distance [5]. Note that, owing to Eq. (1.2), the method can be extended to be
more faithful to NN scattering experiments [6].

The contents are organized as follows. In Sect. 2, we extend our method to tensor force, which
is obtained from Schrödinger equation in coupled 3S � D1 partial waves in JP * 1 � . In Sect. 3, we
give 2+1 flavor lattice QCD results of nuclear force by using PACS-CS gauge configurations.

2. Tensor force from quenched lattice QCD

Tensor force plays an important role in nuclear physics. Together with the repulsive core, it
has important influences on the structures and the stabilities of nuclei. However, phenomenolog-
ical determination of tensor force is known to be afflicted with an uncertainty especially at short
distance due to the existence of centrifugal barrier.

To obtain tensor force in lattice QCD, we consider Schrödinger equation for J P * 1 � . In this
case, the wave function has two components, i.e., s-wave component and d-wave component. The
central force VC 	 r  acts separately within these two components. The tensor force VT 	 r  provides
a coupling between these two, and the action of the LS force VLS 	 r  is restricted within the d-wave
component. If we keep only the first term in Eq. (1.4), we can obtain only the effective central force
V eff

C 	 r;3 S1  . By keeping the one more term in Eq. (1.4), it is possible to obtain the central force
VC 	 r  	 � VC 	 r;3 S1 & and the tensor force VT 	 r  separately. Note that these two terms give strictly
local contributions in Eq. (1.4). The effective Schrödinger equation Eq. (1.3) becomes

	 H0 % VC 	 r 3% VT 	 r  S12  ψ 	"
r  * Eψ 	"
r 0� (2.1)

where H0 �9� ∇2 6 mN, and E � k2 6 mN denotes the non-relativistic energy. For definiteness, we
restrict ourselves to BS wave function ψ 	"
r  for an state with the azimuthal quantum number M * 0,
i.e.,

ψαβ 	�
x � 
y :� lim
t �;� 0

�
0 �� T � pα 	�
x � t  nβ 	�
y � 0 �� �� NN 	 JP * 1 � ;M * 0 !�<) (2.2)

We define projection operators = and > onto s-wave and d-wave components, respectively, as

= ψαβ 	"
r $� 1
24 ∑

g ? O
ψαβ 	 g @ 1 
r 0� >A� 1 �B=2) (2.3)

where O denotes the cubic group, which consists of 24 elements. We multiply = and > to Eq. (2.1)
from the left. Since H0, VC 	 r  and VT 	 r  commute with = and > , Eq. (2.1) splits into the following
two equations as

H0 C = ψ D 	"
r E% VC 	 r  C = ψ D 	"
r E% VT 	 r  C = S12ψ D 	"
r  * E C = ψ D 	"
r  (2.4)

H0 C > ψ D 	"
r 3% VC 	 r  C > ψ D 	"
r E% VT 	 r  C > S12ψ D 	"
r  * E C > ψ D 	"
r 0) (2.5)

Note that each of these equations has two Dirac indices α and β . For definiteness, we pick up	 α � β  * 	 1 � 0  components of these two equations, and solve them for VC 	 r  and VT 	 r  . We arrive
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at

VC 	"
r  * E % 1
∆ 	"
r  	 C > S12ψ D 	"
r  H0 C = ψ D 	"
r F� C = S12ψ D 	"
r  H0 C > ψ D 	"
r & (2.6)

VT 	"
r  * 1
∆ 	"
r  	 � C > ψ D 	"
r  H0 C = ψ D 	"
r E% C = ψ D 	"
r  H0 C > ψ D 	"
r &3�

with ∆ 	"
r G� C = ψ D 	"
r  C > S12ψ D 	"
r H� C > ψ D 	"
r  C = S12ψ D 	"
r  . Note that, if the d-wave component in
the wave function vanishes, the first line in Eq. (2.6) reduces to VC 	 r  * 	 E � H0  ψ 	"
r &6 ψ 	"
r  .

Numerical calculation is performed with quenched QCD by using Blue Gene/L at KEK.
The quenched gauge configurations are generated by employing the standard plaquette gauge ac-
tion at β * 5 ) 7, which leads to the lattice spacing a @ 1 * 1 ) 44 GeV [7]. Propagators of quarks
are generated by employing the standard Wilson quark action with the hopping parameters κ *
0 ) 1640 � 0 ) 1665 � 0 ) 1678, which correspond to mπ I 731 � 529 � 380 MeV, respectively. These calcu-
lations are performed by using Nconf * 1000 � 2000 � 2021 gauge configurations. BS wave functions
are picked up from the time-slice t � t0 * 9 � 8 � 6, respectively, where the ground state saturation is
achieved within the error bars. While the periodic boundary condition is imposed along the spatial
directions, Dirichlet boundary condition is imposed along the temporal direction on the time-slice
t * 0. Wall source is used on the time-slice t * t0 � 5 after imposing Coulomb gauge.

The l.h.s. of Fig. 1 shows BS wave functions of a JP * 1 � � M * 0 state for mπ I 529 MeV. To
reduce the calculational cost, calculation is restricted to the points on the coordinate axes and their
nearest neighbors for r J # 0 ) 7 fm, whereas all points are calculated for r K # 0 ) 7 fm. Note that 3D1

part of the wave function is multivalued as a function of r, which is due to the angular dependence.
The r.h.s. of Fig. 1 shows the resulting central force VC 	 r  and tensor force VT 	 r  together with
effective central force V eff

C 	 r L� 	 E � H0  C = ψ D 	"
r &6 C = ψ D 	"
r  . From viewpoint of the meson ex-
change picture, this shape of VT 	 r  is expected from a cancellation between the contributions from
pion and rho meson. Note that V eff

C 	 r  contains the effect of VT 	 r  through the 2nd order perturba-
tion, where one expects that V eff

C 	 r  acquires sufficient attraction to generate the bound deuteron.
However, we see that the difference between VC 	 r  and V eff

C 	 r  is quite small, which may be due
to an artifact of heavy quark mass. Fig. 2 shows the quark mass dependence of tensor force VT 	 r  .
We see that tensor force is enhanced in the light quark mass region, which suggests the importance
of direct lattice QCD calculation employing light quark mass.

A technical comment is in order. Recall that we used the spin 	 1 � 0  component of Eq. (2.6),
where the 2nd equation vanishes at 
r ∝ 	�M 1 � M 1 � M 1  . This is because the spin 	 1 � 0  component
of d-wave part in the wave function for JP * 1 � � M * 0 is proportional to the spherical harmonics
Y N l O 2 P

M O 0 	 θ � φ  ∝ 3cos2 θ � 1, which vanishes at 
r ∝ 	�M 1 � M 1 � M 1  . Although these points are removed
from the plots, statistical error is accumulated in the neighborhood of these points. (For instance,
see the points at r I 0 ) 5 fm in Figs. 1 and 2.) It is desirable to improve this in the near future.

3. Nuclear force from 2+1 flavor lattice QCD

To compare our results with empirical data, a key role is played by a full QCD calculation
on a large volume employing a smaller quark mass. PACS-CS collaboration is generating 2+1
flavor gauge configurations on a large volume in significantly light quark mass region [9]. PACS-
CS gauge configurations are generated by employing Iwasaki gauge action at β * 1 ) 90 on 323 8
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Figure 1:
�
α � β � � �

1 � 0 � part of the s-wave and the d-wave components of BS wave function for a state
with JP � 1 ��� M � 0 (left) and the reconstructed inter-nucleon potentials VC

�
r � and VT

�
r � (right).
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Figure 2: Quark mass dependence of tensor force.

64 lattice and O(a)-improved Wilson quark (clover) action with a non-perturbatively improved
coefficient cSW * 1 ) 715 [9]. The lattice scale is determined from mπ , mK and mΩ inputs leading to
a @ 1 * 2 ) 176 	 31  GeV (a I 0 ) 091 fm). Hence, the spatial extension amounts to L * 32a I 2 ) 90 fm.
To calculate nuclear force, we use two series of PACS-CS gauge configurations with 	 κud � κs  *	 0 ) 13700 � 0 ) 13640  and 	 0 ) 13770 � 0 ) 13640  , which correspond to mπ I 702 � 296 MeV, respectively.

To calculate BS wave function, we impose the periodic boundary condition along the spatial
direction. On the other hand, along the temporal direction, we impose the Dirichlet boundary
condition on the time-slice t * 32 	 * Nt 6 2  . We locate the wall source on the time-slice t * 0 with
Coulomb gauge. Note that the setup is strictly symmetric around the hyper-plane t * 0 aiming at
doubling the number of data by using the charge conjugation and the time-reversal. (See below.)

We consider the Euclidean four point correlator of nucleon fields with wall source as

Gαβ ;α Q β Q 	�
x � 
y � t :�SR 0 ��� T T pα 	�
x � t  nβ 	�
y � t  p̄ -α Q n̄ -β QVU ��� 0 WX� (3.1)

where p̄ -α � ∑ Yx Z Yy Z Yz εabc � ūa 	�
x  Cγ5d̄T
b 	�
y  � ūc;α 	/
z  and n̄ -β � ∑ Yx Z Yy Z Yz εabc � ūa 	�
x  Cγ5d̄T

b 	�
y  � d̄d;β 	/
z  denote
wall sources for proton and neutron, respectively. Statistical noises are reduced by utilizing the
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following four symmetries. (i) The spatial translation: Gαβ ;α Q β Q 	�
x � 
y � t  * Gαβ ;α Q β Q 	�
x % 
∆ � 
y % 
∆ � t 0�
where 
∆ denotes an arbitrary 3 dimensional vector. (ii) The cubic group: Gαβ ;α Q β Q�	�
x � 
y � t  * Sαα̃ 	 g 
Sββ̃ 	 g  Gα̃β̃ ;α̃ Q β̃ Q 	 g @ 1 
x � g @ 1 
y � t  Sα̃ Q α Q 	 g @ 1  Sβ̃ Q β Q 	 g @ 1 0� where g denotes an arbitrary element of the
cubic group. S 	 g  denotes the (double-valued) representation matrix of SO(3) in the Dirac bispinor
space, i.e., S 	 g F� exp � i

4 σi jωi j � with σi j �[� i
2 C γi � γ j D for g * eω with ω \ so 	 3  . (iii) The spatial re-

flection: Gαβ ;α Q β Q]	�
x � 
y � t  * 	 γ0  αα̃ 	 γ0  ββ̃ Gα̃β̃ ;α̃ Q β̃ Q 	 � 
x �^� 
y � t  	 γ0  α̃ Q α Q 	 γ0  β̃ Q β Q ) (iv) The charge con-
jugation and time-reversal: Gαβ ;α Q β Q 	�
x � 
y � t  * 	 � Cγ0  αα̃ 	 � Cγ0  ββ̃ G

�
α̃β̃ ;α̃ Q β̃ Q 	�
x � 
y �^� t  	 � Cγ0  α̃ Q α Q	 � Cγ0  β̃ Q β Q ) Note that QCD Lagrangian has the charge conjugation symmetry: _ q _ @ 1 � Cq̄T ,_ q̄ _ @ 1 � qTC, _ Aµ _ @ 1 �`� AT

µ , where the matrix notation of the gluon field is adopted as
Aµ � Aa

µT a for color SU(3) generator T a. This implies the charge conjugation of the compos-
ite nucleon fields _ N _ @ 1 �9� CN̄T and _ N̄ _ @ 1 * � NTC, where N represents an interpolating
field for proton or neutron. Note that, for correlators in imaginary time, the charge conjugation is
combined with the time-reversal through the complex conjugation.

The BS wave function ψαβ 	"
r  for the ground state is obtained from the Euclidean four point
correlator in the large t region after multiplied by Pα Q β Q�	 JP � M  as

Gαβ ;α Q β Q�	�
x � 
y � t  Pα Q β Q�	 JP � M  * A0ψαβ 	�
x � 
y;JP � M  e @ E0t %a'&'&'&� (3.2)

where Pα Q β Q�	 JP � M $� 	 σ2  α Q β Q and 	 σ2σM  α Q β Q for JP * 0 � and 1 � , respectively. “ '&'&' ” represents
contributions from excited states, which are exponentially suppressed in the large t region.
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Figure 3: Full QCD results of (effective) central potentials. The l.h.s shows the results for
�
κud � κs � ��

0 � 13700 � 0 � 13640 � , and the r.h.s. shows the results for
�
κud � κs � � �

0 � 13770 � 0 � 13640 � , where the inset is
suppressed because of the huge error bar.

Fig. 3(left) shows the full QCD results of the central force VC 	 r �� 	 E � H0  ψ 	�
x;1 S0 &6 ψ 	�
x;1 S0 
for 1S0 channel and the effective central force V eff

C 	 r;3 S1 b� 	 E � H0  ψ 	�
x;3 S1 &6 ψ 	�
x;3 S1  for 3S1

channel for 	 κud � κs  * 	 0 ) 13700 � 0 ) 13640  . Here, ψ 	�
x;3 S1  denotes ψ 	�
x;3 S1 c� C = ψ D 	�
x  for nota-
tional simplicity. VC 	 r;1 S0  and V eff

C 	 r;3 S1  are obtained from BS wave functions on the time-slices
t * 8 and t * 9, respectively, where the ground state saturations are achieved within error bars.
Similar to the quenched results[5, 8], they have attractive pockets of about 30 MeV in the medium
distance, i.e., 0 ) 5 K # r K # 1 ) 0 fm. In contrast, the repulsive cores are considerably strong. They
are by about 10 times as strong as the quenched result for comparable pion mass [8]. There seem
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to be several possible reasons. (i) A dynamical quark effect, (ii) The action adopted in quenched
calculation may not be close to the continuum limit.

Fig. 3(right) shows the full QCD results of the (effective) central potential for 	 κud � κs  *	 0 ) 13770 � 0 ) 13640  . These results are obtained from the BS wave functions on the time-slice t * 6,
where the ground state saturations are achieved within the statistical errors. We do not show the in-
set because of huge statistical errors. Although it is necessary to improve the statistics significantly
to reduce the huge error bars, we see that the repulsive cores are again considerably strong.

4. Summary

We have presented preliminary lattice QCD results for the tensor force by using quenched
QCD. We have seen that the tensor force has a large quark mass dependence and is enhanced as the
quark mass decreases. We have presented preliminary results of the (effective) central force from
2+1 flavor lattice QCD by using PACS-CS gauge configurations. A remarkable difference from the
quenched results was found in the strength of the repulsive core. It is interesting to investigate the
reason, since it may provide us with a key to the origin of the repulsive core, which is one of the
most important open problems in the nuclear physics.
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