PROCEEDINGS

OF SCIENCE

Pion vector and scalar form factors with dynamical
overlap quarks

JLQCD and TWQCD collaborations: T. Kaneko®P! S, Aoki¢d, T. W. Chiu®,
H. Fukaya®f, S. Hashimoto?P, T. H. Hsieh9, H. Matsufuru?, J. Noaki?, T. Onogi",
E. Shintani® and N. Yamada?P

@ High Energy Accelerator Research Organization (KEK), Bdr305-0801, Japan

b School of High Energy Accelerator Science, The Graduateéfsity for Advanced Studies
(Sokendai), Ibaraki 305-0801, Japan

¢ Graduate School of Pure and Applied Sciences, Universifyisokuba, Ibaraki 305-8571, Japan

d Riken BNL Research Center, Brookhaven National Laboratdpyon, New York 11973, USA
€ Physics Department, Center for Theoretical Sciences, ade for Quantum Science and
Engineering, National Taiwan University, Taipei, 1061&iwan

f The Niels Bohr Institute, The Niels Bohr International Aeaty, Blegdamsvej 17 DK-2100
Copenhagen &, Denmark

9 Research Center for Applied Sciences, Academia SinicpeiTal5, Taiwan

h Yukawa Institute for Theoretical Physics, Kyoto Univerdityoto 606-8502, Japan

We calculate the pion vector and scalar form factors in twoeit QCD. Gauge configurations are
generated with dynamical overlap quarks on 2282 lattice at a lattice spacing of 0.12 fm with
sea quark masses down to a sixth of the physical strange quask. Contributions of discon-
nected diagrams to the scalar form factor is calculated eying the all-to-all quark propagators.
We present a detailed comparison of the vector and scalamigidl chiral perturbation theory to
two loops.

The XXVI International Symposium on Lattice Field Theory
July 14-19 2008
Williamsburg, Virginia, USA

*Speaker.
TE-mail: takashi.kaneko@kek.jp

(© Copyright owned by the author(s) under the terms of the @e&ommons Attribution-NonCommercial-ShareAlike Licen http://pos.sissa.it/



Pion vector and scalar form factors with dynamical overlafatks T. Kaneko

1. Introduction

Pion electromagnetic form factd®, (g?) is one of the fundamental observables in hadron
physics. An analysis of experimental data based on chirsdifiation theory (ChPT) at two loops
leads to a precise estimate of the charge ralitls [1]. A detailed comparison ofr?)y between
ChPT and non-perturbative calculations on the lattice rmayige a good testing ground for recent
lattice simulations in the chiral regime as well as a bettatenstanding of the chiral behavior of
R ().

While there is no experimental processes directly relatetie scalar form factdfs(g?), the
chiral behavior of the scalar radigs’)s is interesting, as it provides a determination of the LEC
and has a 6 times enhanced chiral logarithm comparétg. A non-perturbative determination
on the lattice is challenging, because we need to evalustemhected three-point functions.

In this article, we update our analysismf(g?) reported at the last conference [2] with doubled
statistics, and present newly obtained resultsHg?). These quantities are measured on gauge
configurations of two-flavor QCD on a 1632 lattice generated with the overlap quark action along
the fixed topology strategy [3]. The lattice spacing deteedifrom the Sommer scalg=0.49 fm
is a=0.118421) fm. We refer the reader to Refs.[4, 5] for detailed setup arehdews of our
production simulations.

2. Measurement of pion correlation functions

We measure pion correlators through all-to-all quark pgapars [6]. Contributions of 100
low-lying modes(A ®, u®) (k=1,...,Nep; Nep=100) of the overlap operatdD are evaluated ex-
actly, whereas the remaining high modes are taken into atcsochastically by th&, noise
method. We prepare a single noise vector for each configaratind dilute [6] it intoNg =
3x4x N/2 vectorsn® (k=1,...,Ng) with support on a single value for color and spinor in-
dices and at two time slices. The all-to-all propagator ttean be expressed in a simple form

D*lzz'\‘vecv (N\,eC Nep+ Ng) with two set of vectors
(1) (Nep)
W_Ju- U (Ng) ® — [y (Nep) (1) (Na)
v _{A(l)""’)\(Nep)’X yeei, X }, w {u ulee) pH o }, (2.2)

wherexd =D~1(1— 5, u® u®WTy p(d),
From thev andw vectors, we may construct meson fields at a temporal codedinveith the
Dirac matrixI" and spatial momentumm

r(p (t;p) Zqo w(x+r,t) 0T ry(x 1)1 e P, (2.2)

For the smearing functiop(r ), we choose the loca (r) =& o and exponential functiog(r) =
exp—0.4|r|]. Connected and disconnected three-point functions asaselie subtraction term of
the vev contribution to the scalar form factor, shown in Higare calculated from these meson
fields as

CloM (At At p,p') = — I\i o) (t+ At +At;p) O (t+ Bt p - p)
NtZkIm:l o e ,

x O (t—p), (2.3)



Pion vector and scalar form factors with dynamical overlafatks T. Kaneko

<r> (g°=0)
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Figure 1: Connected (left-most diagram) and disconnected (middigrdim) three point functions. Note
that we have the contribution &(0) from the right-most diagram due to the non-zero vacuum dzfiea
value of the scalar operat&r

1 M/ec
Cl9s9 At At p,p) = NtZ Z oWl (t+ A+ ;') 645 (t;—p)
kl=1
: Nvec
x Z oM (t+atp-p), (2.4)
M/ec

Z Z o) (t+ B+ At p) 0K (t—p)
k=1

< ZZ@’F t;p— p)> , (2.5)
conf

t" m=1

where(---)conf represents a Monte Carlo average. We denote the tempoiraiasiep and spatial
momentum for the initial (final) meson iyt andp (At” andp’), respectively.

Our measurements are carried out at four values of the quadsmy,g in the range 29§
M, [MeV] <520. We explore the region of the momentum transfér7 < ¢? [GeV?] <0 by taking
the meson momentumwith |p| <2. Note that the spatial meson momentum is shown in units of
2ma/L in this article. While we have simulated only the trivial Gdpgical sector, the effect of the
fixed global topology is suppressed by the inverse of theestiate volume~ 1/V [3].

3. Determination of pion form factors

We calculate effective value of the vector form factor fromago
2Mjy Rv(At,At; |pl, |p'|, o?)

At At 3.1

RN = g e ) RUALAY;0,00) GD
C(CO;][”) At, At': /

Ry ( ?) = i ( P.p) (3.2)

Crmaq (At P) Crmg o (AU ')

HereCry oy is the pion two-point function with the smearing functigr(¢’) for the source (sink)
operator, and it can also be calculated from the meson fieldZ2). We take the average B
over momentum configurations corresponding to the samea\afig?. This average as well as
that over the location of the source operator in Egs. (2.3)5)(eads to an accurate estimate of
R (At,At’;g?) as shown in Fig. 2. The vector form factes(g?) is determined from a constant fit
in a range of(At,At’), whereFy (At,At’;¢?) shows a reasonable plateau. We include the leading
finite volume correction (FVC) [7] t&y (?).

The scalar form factor normalized at a certain momentunstean2, can be calculated from
a similar ratio
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Figure 2: Effective value ofry (At,At’; g?) (left panels) andrs(At, At'; g?) /Fs(At, At'; ¢2) (right panels) at
Myd ~ Ms phys/ 2, Wherems phys is the physical strange quark mass.

Fs(At,AU; 7)) — Rs(At,AL; )

/. /
2 L. Rg(Ot,A;7) = Cran(Ot, A p,p")
Fs(At,At;07%)  Rs(At, At 0%)

_ . (33
Crnaq (A4 P) Crmg o (A;p) (3:3)

whereC,=C'&™ _ 459 v A5 Fig. 2 indicatesFs(q?) atq?=0 suffers from a relatively
large statistical error than thoseggt£ 0 due to the severe cancellation betw@%?ﬂic) andCS’le,‘?.
We therefore us€&s(g?) normalized at the smallest non-zero momentum transfer jyigh = 1 in
the following analysis. The normalized form facfas(q?) /Fs(g2) is determined by a constant fit,

while FVC toFs(¢?) is not available so far and is not taken into account.

4. Parametrization of g dependence

The vector and scalar form factors are plotted as a functiaf i Fig. 3. We observe that
Fv(q?) is close to the pole dependencé(1— g?/M3) with M, measured at simulatetlg. Its
¢? dependence is therefore parametrized by the following fofrthe p pole with a polynomial
correction to determine the charge radiu®y and the curvaturey

1
+aP+ ()P +c3(0?)® = 1+ 2P +ov (F)%+---. (4.1)

Fv(o) 5

B 1
- 1-g?/M3

Because the deviation from tgepole is small, we obtain a reasonalié/dof~ 1, and results for
(r?)y andoy are stable against the inclusion of the cubic correctiomter

———— - e T
10 m ,=0.050 / Laf- m,,=0.050 ;.
r — fit: p pole + cubic 1 t — fit: quadratic
b --- VMD r

| L L L | L L L L L L L L L L L L L L
02 -0.6 -0.4 -0.2 0.( : -0.6 -0.4 -0.2 0

Figure3: Vector (left panel) and normalized scalar form factorsttiganel) atnyg~mspnys/2 as a function
of ¢?. Solid lines show our parametrization and its statisticedre In the left panel, we also plgi pole
contribution expected from the vector meson dominance tigsis by the dashed line.

4
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Figure 4: Chiral extrapolation ofr?)y (left panel) andr?)s (right panel) based on one-loop ChPT. Star
symbols show the experimental value fof)y [1] and an indirect determination ¢f?)s throughrr scat-
tering [10].

Such pole contribution in the scalar channel is not cleahiwibur statistical accuracy. Our
data can be fitted to a simple quadratic form

FS(f) = Fo(0) L+ 0%)sf + os(e?)?). 4.2

We confirm that the result for the scalar radiwnd)s is stable if we switch to the cubic or single
pole formFs(0)/(1— g?/M2) with Mg as a fit parameter. The curvatuzeis however strongly
depends on the choice of the parametrization form, and hiemu used in the following analysis.

5. Chiral extrapolation

In one-loop ChPT, the rad{r?)y and(r?)s are given by [8]

1 1 M2
1 13 6 M2

whereN = (4m)2. We set the renormalization scgleto 4rtF, and fixF to the value determined
from our study of the pion mass and decay constant [9]. Thésearf@ however not quite suc-
cessful as seen in Fig. 4. While our data(of)y are fitted with reasonablg?/dof ~ 0.3, the
value extrapolated to the physical quark mas6@4) fm? is significantly smaller than experi-
ment 0437(16) fm? [1]. On the other hand, the one-loop formula f@f)s with the enhanced
chiral log fails to reproduce our data and results in laxgg¢dof~ 16. We note that similar mild
guark mass dependence of the radii is also observed by the Edlboration with a different
discretization on a slightly finer lattice [11]. It is unlikethat the failure of the fits within one-loop
ChPT is caused by systematic uncertainties due to the fixsddgy and the finite lattice spacing.
We then extend our analysis to two loops. The higher orderibotions to the radii are given

by [1]
1 13N 181 1 19 M2
A<r2>v = W <E — K +6N2|’\r/71> M%—F W <€ — 12N|5_72> M72-[|n |:u—g:| , (53)
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Figure 5. Simultaneous chiral extrapolation a?)y (left panel) andoy (right panel) based on two-loop
ChPT (solid lines). We also plot one- and two-loop contiitns by dashed and dotted lines, respectively.

1 23N 869
Alr2)s = W( 16 108+88NI12+80NI2—|—5NI3 24N2I3I4+6N2r31> Y
1 323 M2 65 . [M27]°
W( 36+124NI12+13(]\1I2> MZIn [“2} WMnlnh ] (5.4)

At two loops, the curvature, has non-trivial contributions and can be included in ourdysis

o = —— i+ ! l—%jtﬂlr +N| L+ N2
V' 7 BONFZMZ " N2F4\ 720 25920 3 2" 6° vi2

1 1 N N M2 1 M212
+W <W8+ §|5_’2+€|é> In |:[.l :| 72N2F4In |:IJ_;T] . (5.5)

The analytic terms containin[g{< (X=V,S i=1,2) represent contributions fro®@(p®) chiral
Lagrangian. We denote the linear combinatibr |;,/2 appearing commonly ifr?)y andoy as
19
While the two-loop formulae involve many
LECs, the simultaneous fit t&r?)y and oy has
only four free parametetg, |1 ,, 1\, , andry, ,. This
fit plotted in Fig. 5 shows that the two-loop contri- £
butions are significant in our simulated region oﬁg ot
myg. We obtain a reasonable value)d’f/dofNO.S,
and the extrapolated values @), andcy are :
consistent with experiment [1]. e S
The inclusion of(r?)s into the simultaneous M, [GeV]
chiral fit introduces additional four free parameFigure 6: Chiral extrapolation ofr?)s from si-
ters. In order to stabilize this fit, we fi§ and|X, g:‘:}i?:;“s tr?)v;s andoy based on two-loop
which appear only in the two-loop terms, to a phe-
nomenological estimate=4.31 [10] and a lattice
resultls =3.44 from our analysis of the pion spectroscopy {9The extrapolation ofr?)y andoy
turns out to be consistent with those in Fig. 5. The extrajmieof (r?)s is shown in Fig.6. From

this simultaneous fit, we obtain

—— T
* exprt+chPT -
— total

--- at one loop ]
- attwo loops |

(r?)y = 0.404(22)(22) fm?, (r?)s=0.57869)(46) fm?, o, = 3.11(14)(86) GeV *. (5.6)
The u independent conventidnis defined from! =y (Ij + In[M2/u?]) /2N with ys=—1/2, y,=2 andys = —1/3.
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The first error is statistical. The second is systematicrazstimated by changing the inputs for
I, andl} to different phenomenological estimates in Ref.[1], andiiyting the fitting data to the
radii ((r?)y and(r?)s) or those in the vector channert)y andcy). We also testr?)s from the
cubic parametrization for the? dependence ofs(g?). Note that all the extrapolated values in
Eqg. (5.6) are consistent with experiment.

We obtainls = 11.8(0.7)(1.3), 4 =4.06(44)(99), and |}, = —2.9(0.8)(2.4) x 102 for the
O(p*) LECs. Our estimate df is slightly smaller than 16.0(0.9) obtained in Ref.[1] padue
to a deviation ofF between our lattice determination [9] and two-loop ChPT].[A%e note that
IZ is consistent with our determinatitﬂa: 4.12(56) from F [9] and a phenomenological estimate
4.39(22) [10]. Our results for th@(p®) LECs arer|; = -1.1x107°, rj,,=—4.0x10 " and
rs;=1.3x 10-* with substantial uncertainty of 50 —100 %.

6. Conclusions

In this article, we report on our calculation of the pion fdiamtors with two flavors of dynam-
ical overlap quarks. By employing the all-to-all quark paggatorsFs(g?) is calculated including
contributions from the disconnected diagrams for the finsét The one-loop ChPT formulae fail
to reproduce our data dfs(g?). In our analysis extended to two loops, we observe significan
two-loop contributions at our simulated quark masses, andirm<r2>v7g andoy consistent with
experiment. Further investigations of systematics du@ediked global topology and quenching
of strange quarks are in progress by direct simulationsamtmn-trivial topological sectors and in
three-flavor QCD.

Numerical simulations are performed on Hitachi SR11000I&hdl System Blue Gene Solu-
tion at High Energy Accelerator Research Organization (KEKder a support of its Large Scale
Simulation Program (No. 08-05). This work is supported irt pg the Grant-in-Aid of the Ministry
of Education (No. 18340075, 18740167, 19540286, 1974026025010, 20039005, 20340047,
and 20740156), the National Science Council of Taiwan (NSCN6-2112-M-002-020-MY 3,
NSC96-2112-M-001-017-MY3, NSC97-2119-M-002-001), antNCQSE (No. 97R0066-69).
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