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The comparison between unquenched SU(3) lattice QCD with chemical potential and random
matrix theory can provide information on the pion decay constant Fπ. We calculated eigenvalue
distributions of the Dirac operator on a 83×4 lattice using N f = 2 Kogut-Susskind fermions. We
performed fits between the spectral density computed from random matrix theory and lattice data
at coupling β = 5.30 for fixed quark mass ma = 0.05 and iso-vector chemical potential µa = 0.0,
0.004773, 0.1 and 0.2, finding good agreement. In particular our data indicate that Fπ decreases
as the iso-vector chemical potential increases. For a more precise fit of the rescaled parameter
µ2F2

πV we also compare to the first eigenvalue distribution from random matrix theory.
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1. Introduction

Lattice QCD with finite lattice spacing a in a 4-dimensional volume V is a powerful regular-
ization method to obtain information about the non-perturbative regime. Baryon chemical potential
µB inducing a finite quark density is relevant in the early universe, inside neutron stars or in heavy
ion collisions. However, in SU(3) lattice QCD, the quark matrix becomes complex for µB , 0
and this causes the famous sign problem. Thus ordinary Monte Carlo methods which generate
gauge configurations with a Boltzmann weight, can not be used without modifications. Apart from
the quenched approximation which disregards the Dirac determinant, there is the phase quenched
method keeping the absolute value of the Dirac determinant in the measure[1], but disregarding its
phase. In this case, an iso-spin chemical potential µ is being introduced. Within standard lattice
QCD, we can still analyse the spectrum of such a theory for an even number of flavours N f .

QCD in the ε-regime can be described using chiral Random Matrix Theory (RMT)[2]. RMT
has produced many accurate analytical results. The most important observable is the spectral den-
sity of the Dirac operator. By comparing the spectral density to lattice data, one can determine
low energy constants in the chiral Lagrangian: Σ, the chiral condensate, and Fπ, the Pion decay
constant. At µ = 0, the Dirac operator is anti-Hermitian and its eigenvalues are distributed along
the imaginary axis. But when µ , 0, the spectrum extends into the complex plane. At this point the
Dirac operator becomes non-Hermitian.

The spectral density correlation functions of quenched and unquenched Dirac operators at µ ,
0 were calculated using RMT by Splittorff and Verbaarschot[3], and by Osborn and coworkers [4,
5], respectively. Also the comparison between quenched QCD lattice data and the spectral density
from RMT were done using Kogut-Susskind (KS) fermions[6] or overlap fermions[7]. The latter
satisfy the Ginsparg-Wilson relation, maintaining an exact lattice chiral symmetry and exact zero-
modes. They also satisfy an index theorem. However, overlap fermions require huge computational
resources and it is difficult to accumulate enough unquenched gauge field configurations. For that
reason we use unimproved KS fermions, which restricts us to the sector of trivial gauge topology.

At µa≈0, the spectrum close to the origin is oscillating along the imaginary axis, indicat-
ing the locations of individual eigenvalues. Consequently a fit between lattice QCD and chiral
RMT can be done very accurately. However, these oscillation disappear rapidly as µa increases.
Although a fit to the resulting plateau can be done, it becomes more convenient to compare to indi-
vidual eigenvalue distributions. At µ= 0, all individual eigenvalue distribution functions are known
analytically[8]. When µ , 0 individual eigenvalue distributions of the quenched and unquenched
QCD Dirac operator can be calculated in an expansion[9].

In this article, we compare unquenched SU(3) lattice QCD data with iso-spin chemical po-
tential to the spectral density and smallest eigenvalues of chiral RMT, and we also investigate the
relationship between µa and Fπ. In this comparison, it is important to define the mean level spac-
ing d of the Dirac operator eigenvalues, in order to determine the rescaled quantities on the lattice.
While at µ = 0 this is obvious, at µ , 0 the eigenvalue are distributed in two dimensions, and we
evaluated d by projecting the complex eigenvalues onto the imaginary axis, using the Banks-Casher
relation. Unfortunately it turns out that our rescaled quark mass is quite big, practically quench-
ing the small eigenvalues. Our data are not yet fine enough to resolve the corresponding small
difference between quenched and phase quenched RMT predictions.
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2. Lattice Gauge Theory (LGT) and Random Matrix Theory (RMT)

At finite temperature our theory can be defined with the following partition function,

Z =
∫

DU Dψ̄Dψ exp [

−
∫ 1/kBT

0
dτ

∫

d3x (L+µψ̄γ4ψ)] =
∫

DU (det∆(µ))N f /4 e−βS g . (2.1)

Here, kB stands for the Boltzmann constant, T for the temperature, N f for the number of flavours,
µ for the chemical potential, β = 6/g2 for the coupling, S g for the gauge action, and ∆(µ) for the
Dirac operator. We assign periodic (non-periodic) boundary conditions to the link (site) variables
U (ψ) on the lattice, corresponding to the gauge (quark) fields.

In order to increase our statistics on the lattice, we use unimproved KS fermions, limiting
us to gauge field topology ν = 0. At µ = 0, the fermion determinant det∆(µ) is real and can be
calculated. When µ , 0, det∆(µ) becomes complex, |det∆(µ)| eiθ and the phase eiθ invalidates the
standard Monte Carlo formalism when updating gauge configurations. As a way out we consider
the following phase quenched average 〈O〉, which is equivalent to introducing an iso-spin chemical
potential for N f = 2:

〈O〉 = 1
Z

∫

DU |det∆|1/2 Oe−βS g . (2.2)

In chiral RMT one writes the eigenfunctions of the Dirac equation in a chiral basis. The
partition function of RMT at µ , 0 defined as[4]

Z =
∫

dAdB exp{−N Tr(AA†+BB†)}
N f
∏

f=1
det













m f iA+ µ̂B
iA†+ µ̂B† m f













, (2.3)

where A and B are N×N complex matrices for fixed topological charge ν = 0, and µ̂ is the chemical
potential in RMT. Because of chiral symmetry the 2N (∼ Volume V) complex eigenvalues z j come
in ± pairs, we restrict the integration domain to the upper half-plane C+. Using a Schur decom-
position of the RMT Dirac operator, we can define an eigenvalue basis where details are given
in[4, 5]

Z =
N

∏

j=1

∫

C+

d2z jP({z}) , P({z}) =
N

∏

j=1
w(N f )(z j)

N
∏

i> j=1

∣

∣

∣z2
i − z2

j

∣

∣

∣

2
. (2.4)

Here P({z}) is the joint probability distribution function. The weight w depends on the N f flavours
and the quarks masses m f ( f = 1, . . . ,N f ),

w(N f )(z j) =
N f
∏

f=1
(m2

f − z2
j) |z j|2K0

(

N(1+ µ̂2)
2µ̂2 |z j|2

)

e
N(µ̂2−1)

4 µ̂2 (z2
j+z∗2j )

, (2.5)

where K0 is a modified Bessel function of the second kind.
The complex eigenvalue k-point distribution functions are defined as follows in RMT

Rk(z1, . . . ,zk) ≡ 1
Z

N!
(N − k)!

N
∏

j=k+1

∫

C+

d 2z jP({z}) , (2.6)
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e.g. R1(z) is the spectral density. All complex eigenvalue density functions can be computed as
follows within the orthogonal polynomial method[4, 5],

Rk(z1, . . . ,zk) = det
1≤i, j≤k

KN(zi,z
∗
j) . (2.7)

Here KN(zi,z∗j) is the kernel of bi-orthogonal polynomials expressed in terms of Laguerre polyno-
mials in the complex plane.

In the microscopic large-N (volume) limit RMT becomes equivalent to QCD in the ε-regime[10].
In this limit we use the following RMT (Lattice) rescaling also called weak non-Hermiticity

ξi ≡ Nzi (= V Σzi = ziπ/d) , η f ≡ Nm f (= V Σm f = m fπ/d) , α2 ≡ 2Nµ̂2 (= VF2
πµ

2) . (2.8)

Here d is the mean level spacing based on Banks-Casher relation, as explained in the introduction.
In the quenched case, the microscopic spectral kernel reads[3],

Ks(ξ1, ξ
∗
2) = 1

2πα2 |ξ1ξ2|K0( |ξ1|2

4α2 )
1
2 K0( |ξ2|2

4α2 )
1
2 exp[−

Re(ξ2
1 + ξ

2
2)

8α2
]

∫ 1

0
dt e−2α2

I0(ξ1 t) I0(ξ∗2 t), (2.9)

where I0 is a modified Bessel function of the first kind and the microscopic spectral density is
ρ̂(N f=0)(ξ) =Ks(ξ,ξ∗) . For our phase quenched lattice data with N f = 2 flavors of equal mass η ≡
η1 = η2, we also need the corresponding phase quenched result from RMT[4, 5]:

ρ̂(N f=2)(ξ) = ρ̂(N f=0)(ξ)
(

1− |Ks(ξ,η∗)|2

Ks(η,η∗)Ks(ξ,ξ∗)
)

. (2.10)

3. Comparison of lattice data and RMT

In this section we compare the eigenvalue density function ρ(ξ) of LGT and the microscopic
spectral densities ρ̂(N f=0,2)(ξ) of RMT. In LGT, we generated the gauge configurations by using the
R-algorithm with N f = 2 fermions of mass ma = 0.05, on an 83 × 4 lattice at β = 5.30. The next
step is to calculate the eigenvalues for these gauge configurations. It is rather time consuming to
calculate all eigenvalues using LAPACK. Since we only need the eigenvalues near the origin in the
microscopic limit we only compute the first 100 eigenvalues ordered according to their absolute
value. For this purpose, we use the LU decomposition and ARPACK. In this case, we calculated
the eigenvalues for 5,000∼15,000 configurations since the calculation for each configuration can
be done more quickly. Next, by taking the statistical average of these eigenvalue data, we obtained
the eigenvalue density. In order to compare to RMT notation, the eigenvalue density function was
normalised as

∫

dξ ρ̂(ξ) = N = Nc×83×4.

Table 1: Summary of simulation parameters (β=5.30,
V=83×4)
µa level spacing d no. of config.
0.0 2.57(4)×10−3 5,000
0.004773 2.64(4)×10−3 15,000
0.10 2.73(4)×10−3 15,000
0.20 4.3(2)×10−3 10,000

For the comparison of the lattice data
and RMT, the mean level spacing d plays
an important role. At µa = 0, the eigenval-
ues lie on the imaginary axis. In order to
obtain the eigenvalue density near the ori-
gin in the Banks-Casher relation Σ = 〈ψ̄ψ〉 =
−πρ(0)/V = −π/(Vd) , we need the spacing d
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of the eigenvalues along the imaginary axis. At µa , 0, the problem of defining an order occurs
because the complex eigenvalues spread into two dimensions. Because we consider weak non-
Hermiticity, we project the complex eigenvalues on the imaginary axis and measure d of several
eigenvalues near the origin. At µa = 0.0, 0.004776 and 0.1 the variation of d due to the number of
minimum eigenvalues is small, but for larger µa, the variation of d increases.

In the case of the chemical potential µa = 0.1, we investigate the relationship between LGT
and RMT as follows.

1. Calculation of the mean level spacing d and rescaling of the lattice data: We have 15,000
configurations and we calculate the average mean level spacings of the smallest 7 eigenvalues
in each configuration. This results to a value d = 2.73(4)×10−3 then being used in rescaling
the eigenvalue za with π/d = 1.15(2)×103, leading to rescaled eigenvalues ξ (see eq. (2.8)).

2. The rescaled mass obtained from ma in the same way reads η = 57.6. Up to this point we
have no free parameter.

3. Using this value for η we choose α to fit best eq. (2.10) from RMT. In order to do a one-
dimensional fit we choose a cut of the density along the real axis, leading to α = 1.68. The
same values of α is then used for the quenched and phase quenched curve in Fig. 2.

As shown in Fig. 2, the phase quenched LGT result and RMT results coincide with tuning
only one free parameter α. Because the effect of unquenching is very small due to η� 1, our data
cannot distinguish between quenched and phase quenched RMT predictions, being consistent with
both curves. For comparison we also show the histogram of first, second, and third eigenvalue of
the lattice data.

In the case of µa = 0.2, Fig. 3 shows the comparison between the lattice QCD data and RMT.
Based on the RMT curves it is obvious that the quark mass pushes the density in along the real axis.
Although the difference between quenched and phase quenched is most pronounced for this value
of µa, it is still not conclusive for our data. Moreover, for this µa we have β=5.30≈ βc=5.29(9) from
the simulation of Kogut and Sinclair [11], so we are on the chiral phase transition to the deconfined
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Figure 1: RMT density eq. (2.10) at
α = 1.68 and η = 57.6.
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Figure 2: The eigenvalue density at µa = 0.10 cut along the
real axis (left) and the imaginary axis (right). The histograms in
black are unquenched lattice data. Red, green and light-blue his-
tograms stand for the first, the second and the third lattice eigen-
value distributions. The blue (black) curve corresponds to the un-
quenched (quenched) RMT result for α = 1.68 and η = 57.6(∞).
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Figure 3: Same as Fig.2, but for µa= 0.20, α= 2.38 and η= 36.2.

Table 2: Estimation of Fπ as µa increases.
µa α f it α f it/µa

0.0 none none
0.004773 0.08 16.8
0.10 1.68 16.8
0.20 2.38 11.9

phase, where the RMT used no longer applies. The agreement with the data still looks remarkably
good. Following [11] we keep our µa < mπa/2≈0.29 away from the pion condensation transition.

Let us now comment on Fπ as a function of µ. By calculating α/µa = Fπ/
√

V , it is possible
to estimate the variation of Pion decay constant Fπ with µ. The result is shown in Table2. At
µa = 0.0,0.004773 and 0.10, the coupling constant β = 5.30 is smaller than βc and these density
regions are in the confined phase. Also, the chiral condensate 〈ψ̄ψ〉 and α f it/µa do not change so
much. But at µa = 0.20 (on or above the transition), 〈ψ̄ψ〉 and α f it/µa decrease. This points out
that Fπ decreases as µ reaches close to µc.

4. First eigenvalue distribution for complex eigenvalues from RMT

Re[ξ] Im[ξ]

p  (ξ)1

2 4 6 8 10 12 14

0.01

0.02

0.03

0.0
02 4 6 8 10 12 14

0.01

0.02

0.03

0.0
0

p  (ξ)1

Figure 4: First eigenvalue distribution at µa = 0.10. The
red histogram stands for the first eigenvalue density distri-
bution from phase quenched LGT, the black curve is the
corresponding distribution p1(ξ) from quenched RMT.

In the small-µa region, the oscilla-
tions present in the eigenvalue density
ρ(ξ) of LGT and ρ̂(ξ) of RMT facili-
tate an accurate fit. As µa increases,
the oscillations disappear and a simple
plateau appears. Thus it becomes impor-
tant to compare to individual eigenvalue
distributions. From the relation between
the gap probability and 1st eigenvalue
p1(ξ), we can express the latter in a ex-
pansion of density distributions[9],

p1(ξ) = R1(ξ)−
∫

J
dξ′R2(ξ,ξ′)+ 1

2

∫

J
dξ′dξ′′R3(ξ,ξ′, ξ′′)+ · · · . (4.1)

Here 1 eigenvalue is inside the set J, and N − 1 eigenvalues are in its complement J̄ ≡ C+/J.
Eq.(2.9) gives the quenched microscopic one- and two-point functions as follows,

ρ̂(N f=0)(ξ) =Ks(ξ,ξ∗) , ρ̂(N f=0)(ξ,ξ′) =Ks(ξ,ξ∗)Ks(ξ′, ξ′∗)−Ks(ξ,ξ′∗)Ks(ξ′, ξ∗). (4.2)

In the case of µa = 0.10 a preliminary comparison is made between the first eigenvalue density
p1(ξ) of LGT and quenched RMT, as shown in Figure 4. Only the first two terms were used in the
expansion Eq. (4.1) due to the convergence time of the calculation. The agreement between lattice
data and RMT analytical curve is good up to almost Im(ξ) ≈ 6.0 where our approximation breaks
down and we have cut the curve becoming negative.
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5. Summary

We have performed unquenched simulations on a 83×4 lattice using N f =2 flavours of Kogut-
Susskind fermions at mass ma=0.05, for several values of an iso-spin chemical potential µa. To
analyze distributions of the Dirac eigenvalues we compared to prediction from RMT for the density
and individual eigenvalues, being valid in the ε-regime of QCD. In the case of µa=0.0 there is no
free parameter and we found excellent agreement up to including the first three eigenvalues. For
values µa=0.004773,0.10and0.20, it was possible to fit to the RMT curves by tuning one parameter
α2=µ2F2

πV , thus determining the pion decay constant. We estimated the variation of Fπ with µa,
finding a decrease from the confined phase compared to µa=0.20≈µca approximately on the chiral
phase transition. Unfortunately our quark masses were too large to find a sizable difference between
quenched and phase quenched predictions of RMT. Our data were in good agreement though and
consistent with both curves for all values of chemical potential, including up to µca.
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