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We report our on-going finite density and temperature project, where we employ Wilson fermions
with the clover terms and Iwasaki improved gauge action. We are studying both pure imaginary
and pure real chemical potential regions at the same time. For the real baryon chemical potential,
we use the reweighting method. Since our goal is to simulate QCD at extreme conditions towards
realistic parameters, i.e., lighter quark and smaller lattice spacing, and higher orders of fermion
reweighting factors are non-negligible and converges slowly as the quark mass decreases, we
develop a new simple Taylor expansion method, where an expansion parameter is exp(±µ/T )−1,
not µ itself. This gives simple formula for any order of fermion reweighting factors. We use also
the hybrid-list and dilution techniques in “practical all-to-all propagators”.
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1. Introduction

Although the numerical simulation of QCD at finite baryon density is one of the most difficult
problems because of the sign problem in the fermion measure, there have been steady progresses
in the finite density lattice QCD in these years. This is because the field is so attractive and chal-
lenging. Once we can study non-perturbatively QCD in the density- temperature plane, QCD will
reveal its rich structure, and we expect to get experimental informations from high-energy heavy
ion collisions, and astrophysical observations.

On the other hand, progresses of the simulation technique of lattice QCD are significant, and
they will make it possible to perform realistic lattice QCD simulations.

We develop a HMC simulation code of Wilson fermions with the clover term, and the renor-
malization improved gauge action. This is currently practically best for analyzing QCD on a rea-
sonably powerful machines. We employ this code for finite density and temperature QCD simula-
tions. The fermion matrix has the form,

D(µ) = I −κ
3

∑
i=1

[

(1− γi)Ui +(1+ γi)U
†
i

]

−κ
[

(1− γ4)e
+µU4 +(1+ γ4)e

−µU†
r

]

+ (Clover Term). (1.1)

Here we drop the site dependence.
The path integral after integrating the fermion Grassmann numbers is

Z =
∫

DU (detD)N f e−SG . (1.2)

We consider the two-flavor case,N f = 2.
The fermion matrix, Eq.(1.1), satisfies the flowing relation:

D(µ)† = γ5D(−µ∗)γ5. (1.3)

We study both the real and imaginary chemical potential regions at the same time,and try to
extract informations on finite density aspects of QCD as much as possible.

For the real chemical potential, we use the reweighting technique. When the quark mass
is decreasing and reaches to the realistic one, we need higher and higherterms of the fermion
reweighting factor. This brings us two problems: the formula is more complicatedand the stochas-
tic estimation of higher reweighting factors becomes converges slowly. We propose a new Taylor
expansion technique and an improvement of the stochastic estimation.

2. Formulation

2.1 New Taylor expansion for reweighting

Let us divide the fermion matrix, Eq.(1.1), into the one atµ = 0 and the rest,

D(µ) = D(0)+∆D(µ). (2.1)

∆D consists of two parts,
∆D = ∆D+ +∆D−. (2.2)
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where

∆D+ ≡−κ(e+µ/T −1)(1− γ4)U4δx4,Nt ,

∆D− ≡−κ(e−µ/T −1)(1+ γ4)U
†
4 δx4,Nt . (2.3)

Then,

detD(µ) = det(D0 +∆D) = detD0det(1+D−1
0 ∆D)

= detD0×exp{Tr log(1+D−1
0 ∆D)} = detD0× e−∆SF/N f , (2.4)

whereD0 ≡ D(0) and

∆SF ≡ N f Tr ∑
n=1

1
n
(−1)n−1Tr[D−1

0 (∆D+ +∆D−)]n (2.5)

This ∆SF is a fermion reweighting factor, and itsµ dependence in each term can be factored
out,

(∆D+)k(∆D−)l = (e+µ/T −1)k(e−µ/T −1)l × (µ-independent term) (2.6)

D0 has noµ dependence, and, once can calculate a reweighting factor, we can construct reweighting
factors for any value ofµ/T simultaneously for each configuration.

For quark propagators, which we need to construct hadron propagators, we can expand in a
similar manner,

D−1 = (D0 +∆D)−1 = (1+D−1
0 ∆D)−1D−1

0 = ∑
n=0

(

−D−1
0 ∆D

)n
D−1

0 . (2.7)

We plan to use this formula for hadron screening mass calculations at finite density, because this is
much simpler than the present Taylor expansion method[4].

2.2 Practical all to all propagators

Hybrid lists
Now main calculation for evaluating the fermionic reweighting factor is

Tr
(

D−1
0 ∆D

)n
. (2.8)

Recently TriLat group proposed an effective way to calculate all-to-all propagators[2]. We
borrow their idea to calculate Eq.(2.8).

Suppose we have a series of vectors|φk〉 which are complete,

∑
k

|φk〉〈φk| = I. (2.9)

There are many (theoretically infinite) choices of such vectors. One is eigen values of the matrix
Q ≡ γ5D0,

Q|λk〉 = λk|λk〉 (2.10)
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In order to satisfy Eq.(2.9), we require the following relations:

〈i|

(

∑
k

|φk〉〈φk|

)

| j〉 = δi, j. (2.11)

So-called noise vectors fulfill the condition. TriLatt group shows that an effective way is to use
truncated eigen vectors, and to compensate them by the noise vectors.

Let us introduce a projection operator,P = 1−∑Nev
1 |λk〉〈λk|. We calculateQ−1(1−P) by

∑Nev
1 |λk〉〈λk|, and estimateQ−1P by noise vectors. UsingQ−1 = Q−1(1−P)+Q−1P,

Q−1 = Q−1∑
k

|φk〉〈φk| =
Nev

∑
k=1

1
λk

|λk〉〈λk|+
1

Nnoise

Nev+Nnoise

∑
k=Nev+1

|ξk〉〈Pηk| (2.12)

whereη are noise vectors, andξ is a solution ofQξk = Pηk.
UsingQ−1 = ∑ |uk〉〈wk| andD−1

0 = Q−1γ5, we can evaluate each term in the fermion reweight-
ing factor as

Tr(D−1
0 ∆D)n = ∑

k

Tr|uk〉〈wk|γ5(D
−1
0 ∆D)n−1

= ∑
k

〈wk|γ5D−1
0 ∆D · · ·D−1

0 ∆D|uk〉. (2.13)

Dilution
For the vectorφk, we may adopt a unit vector,φk(i) = δi,k, wherei andk arei = (a,α ,x),k =

(b,β ,y) (a,b : color, α ,β : Dirac, x,y : site). In this case, we get the exact elements ofQ−1, but
we must solve the linear equationNc ×4×Lattice Volume times. The random noise vectors are
another extreme.

TriLat collaboration suggests a compromise. We introduce noise vectors,η(a,α)(x)≡~ea~eα χ(x),
where~ea and~eα are unit vector in color and Dirac space, andχ(x) are random numbers which sat-
isfy Ave(χ(x)χ(y)) = δx,y.

2.3 Imaginary chemical potential

In case of pure imaginary chemical potential,µ = iµI , the relation, Eq.(1.3), becomes,

D(µI)
† = γ5D(µI)γ5, (2.14)

and there is no sign problem, i.e., detD is real.

3. Numerical Test

We will show some preliminary data to see if such simulations work. The lattice size is83×4.
In Fig.1, we study the contributions from the first and the second term of Eq.(2.12) for TrD−1

0 ∆D.
β = 1.85 which corresponds toT/Tc = 0.99[1]. The hopping parameter,κ, is 0.140070. First
we suppress the noise term, i.e.,Nnoise = 0, and increaseNev. Until Nev = 10 the real part of the
obtainedTrD−1

0 ∆D changes rapidly. Then we increaseNnoise from 1 to 5. The change is less.
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Although we are still at a very preliminary stage, this suggests that the contribution from the eigen
vectors is large, and we need still large number of the noise vectors.

For the imaginary chemical potential, we setβ = 1.90, which correspondsT/Tc = 1.08. The
hopping parameter isκ = 0.138817. We show in Fig.2. Real part of Polyakov lines as a function
of the pure imaginary chemical potential,µI. Because of the Roberge-Weiss symmetry[5], any
obserbables in the pure imaginary chemical potential has the periodicity, 2π/Nc. We see here just
the first period.
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Figure 1: Contributions of the first term (Eigen functions) and the second term (Noise vectors) in the right
hand side of Eq.(2.12) to TrD−1
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Figure 2:

4. Summary

We have just started to check the validity of the algorithms and lattice actions. Thenumerical
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tests presented here are still not very convincing, and we must see behaviors with much less quark
masses.

If the algorithm and code works well there, we can investigate many interesting observables.
First we can provide predictions at finite imaginary chemical potentials. Thenone can compare
them with those by PNJL model by tuning its parameters[6]. Then the PNJL model has much
reliable prediction power at the real baryonic chemical potentials.

Note that the expansion with respect toe±µ/T −1 can be applied also for the pure imaginary
chemical potental. Although we can calculate at finiteµ if µ is pure imaginary, we need a fitting
ansatz for converting results to the real chemical potential. Present standard way to fit finiteµI is
polynomical functions ofµI , but it seems to have a limitation. It is worth while to try this new
expansion formula.

Another interesting target is hadron screening masses at finite temperature. So far there have
been such study only with the staggered fermions. There it becomes unclear which flavor and Dirac
components we put the chemical potential. This problem is more complicated whenwe consider
both baryonic and iso-spin chemical potential.
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