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We exposit the eigenvalue distribution of the lattice Dirac operator in Quantum Chromodynamics

with two colors (i.e. two-color QCD). We explicitly calculate all the eigenvalues in the presence of

finite quark chemical potentialµ for a given gauge configuration on the finite-volume lattice. We

make use of the Banks-Casher relations to relate the eigenvalue spectral density to the physical

observables. Assuming the strong coupling limit, we exhibit the numerical results for a random

gauge configuration in two-color QCD implemented by the staggered fermion formalism and

confirm that our results agree well with the known estimate quantitatively.
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1. Introduction

Quantum Chromodynamics with two colors (two-color QCD) instead of three is a sophisti-
cated practice ground for theorists to extract worthwhile information out of dense quark matter.
We immediately hit on several reasons why we can believe so: First of all, numerous works on
dense two-color QCD have almost established a firm understanding on the ground state of two-
color QCD by the analytical approach as well as the Monte-Carlo simulation [1, 2, 3, 4, 5, 6].
Second, the notorious sign problem of the Dirac determinant atµ 6= 0 (whereµ is the quark chemi-
cal potential) is not so harmful as genuine QCD, which makes it viable to perform the Monte-Carlo
integration [3, 7]. Third, dense two-color matter realizes a bosonic baryon system leading to the
Bose-Einstein condensation of the color-singlet diquark [2, 8]. This two-color superfluid phase is
reminiscent of the three-color superconducting phase [9], for they both break theUB(1) symme-
try. Finally, enlarged flavor symmetry earned by the pseudo-real nature of the SU(2) group that is
called Pauli-Gürsey symmetry constrains two-color QCD atmq = µ = 0. The interplay between
the chiral and diquark sectors simplifies owing to the symmetry, which enables us to construct an
effective model for two-color QCD with less ambiguity.

We usually define the order parameter and concern its expectation value to examine the phase
structure with varying the external parameters such as the temperatureT, the quark chemical po-
tentialµ, the quark massmq, and so on. In this article we will look into the eigenvalue distribution
of the Dirac operator and characterize the state of matter by the distribution pattern. It is long
known that the eigenvalue spectrum is informative in the vacuum and the random matrix theory
is capable of determining the low-lying spectrum, which has recently been extended to the finite
density study [5]. It is not only the low-lying spectrum but also the whole spectral density that
we will deal with here. The Monte-Carlo simulation generates a set of gauge field configurations
each of which has a substantial weight on the partition function. One configuration corresponds
to one value for a certain operator (the order parameter for example of our interest). The more
configurations we accumulate, the more accurately we can improve the expectation value of the
order parameter. Here, we would remind that the well-known Banks-Casher relation [10] yields
the chiral condensate given in terms of the eigenvalue spectral density at the origin (i.e.mq → 0).
It follows in turn that the order parameter makes use of only tiny amount of the entire information
available from the spectrum. Hence, we will unveil detailed information in a special case of dense
and cold (T = 0) quark matter with two colors.

2. Two-Color QCD at Strong Coupling

In the limit of the strong coupling the gauge action does not enter the dynamics and the parti-
tion function is simply given by the fermionic part;

Z =
〈
(detD)Nf

〉
U
≡

∫
∏
n,µ

dUµ(n)
(
detD

)Nf . (2.1)

HereD is the Dirac operator. Although the strong coupling limit is a drastic approximation which
neglects the gauge dynamics completely, the Dirac determinant alone with random gluon fields can
grasp rich contents of quark matter not only in the two-color case [1, 4, 8] but also in the general
case [11, 12, 13].
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In a box with volumeV = L4 (here we chooseL = 6), the operatorD is a (4NcV)× (4NcV)
matrix. We denote the eigenvalue ofD by λi , that is,Dvi = λivi , wherei runs from1 to 4NcV. Then
the Dirac determinant is given by the product of all the eigenvalues. It is easy to prove thatdetD in
the SU(2) gauge theory takes a real value even at finite density whereD loses theγ5-Hermiticity,
i.e. γ5D(µ)γ5 = D†(−µ) 6= D†(µ). The standard argument follows;

detD(µ) = det
[
(Cσ2γ5)−1D(µ)(Cσ2γ5)

]
= detD∗(µ) =

[
detD(µ)

]∗
. (2.2)

Here, to derive the above, the necessary relations areγ5γµγ5 =−γµ , CγµC−1 =−γT
µ , andσ2Uσ2 =

U∗ where the last relation corresponds to the pseudo-real nature of the SU(2) group.
From this argument we see that two-colordetD(µ) is real but not necessarily positive. The

simulation thus entails an even number ofNf so that(detD)Nf is positive definite. The two-color
determinant, however, buries a nice property of respective eigenvalues under the product. We can
prove that, ifλi = mq + iλ ′i is an eigenvalue of the Dirac determinant in two-color QCD, there
appearmq− iλ ′i , mq + iλ ′∗i , andmq− iλ ′∗i simultaneously in the eigenvalue spectrum [3, 7]. The
proof may break down wheniλ ′i is a real number; the eigenvectors formq+ iλ ′i andmq− iλ ′∗i could
not be independent. According to Ref. [3] the staggered fermion is safe from such a possibility but
the Wilson fermion has only a pair ofmq + iλ ′i andmq− iλ ′i instead of a complex quartet in that
case of realiλ ′i . Then the single-flavor Wilson fermion suffers the sign problem once either of real
mq + iλ ′i andmq− iλ ′i is negative.

3. Banks-Casher Relations

3.1 Chiral Condensate

It is widely known that the chiral condensate has a close connection to the Dirac eigenvalue
distribution via the Banks-Casher relation [10]. In the explicit presence of the source for the chiral
condensate (i.e. mass term), the Dirac operator could be decomposed into the form ofD [m] =
mq1+D [0] whose eigenvalue is denoted asλi = mq+ iλ ′i . The chiral condensate per flavor is given
by the derivative ofZ with respect tomq, which leads us to

1
Nf
〈ψ̄ψ〉=− 1

NfV
∂

∂m
lnZ =− 1

V

〈〈
∑

i

1
λi

〉〉
=

〈〈∮
dλ
2π i

πρχ(λ )
λ

〉〉
, (3.1)

whereρχ(λ ) is the eigenvalue spectral density which is to be expressed in the complex plane as

ρχ(λ )≡ 1
πV ∑

i

1
λi−λ

, (3.2)

which is, strictly speaking, the resolvent rather than the spectral density. To keep the analogy to the
conventional Banks-Casher relation, however, we shall refer to the above as the spectral density.
The integration contour should go around all of the poles atλi to pick all the eigenvalues up. In our
notation〈〈· · · 〉〉 represents the ensemble average including the Dirac determinant.

Here we consider the contour which is an infinitely large circle in the complex plane surround-
ing all the poles. Then the contour integral must amount to zero becauseρχ(λ )/λ goes to zero
faster than|λ |−1. That means that we can evaluate the above integral by the negative residue of the
pole atλ = 0. After all, we have

〈ψ̄ψ〉=−Nf π
〈〈

ρχ(0)
〉〉

. (3.3)
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3.2 Diquark Condensate

We can develop the same argument for the diquark condensate as well as the chiral condensate.
We shall limit our discussions to the case with degenerate two-flavor (u and d) quarks. In the
presence of the same quark chemical potentialµ for u andd quarks, we can introduce into the
Lagrangian density the source for the diquarkJ and for the anti-diquark̄J which are anti-symmetric
in spin, color, and flavor. By means of a variable change byφ̄d ≡ ψT

d Cσ2 andφd ≡Cσ2ψ̄T
d , it is

possible to write the Lagrangian density down as

L = (ψ̄u, φ̄d)

(
D(µ) −Jγ5

J̄γ5 D(−µ)

)(
ψu

φd

)
. (3.4)

The integration over the quark fields is then straightforward and the resultant partition function is
given as the determinant as follows;

Z(J) =

〈
det

(
D(µ)γ5 −J

J̄ D(−µ)γ5

)〉

U

=
〈

det
[
D(µ)D†(µ)+ |J|2

]〉
U

, (3.5)

where we have usedγ5D(−µ)γ5 = D†(µ). We note thatD(µ)D†(µ) is always Hermitean though
D(µ) may not be so. We can then prove that the eigenvalue ofD(µ)D†(µ) is non-negative real,
which we denote byξ 2

i with choosingξi ≥ 0. The diquark condensate thus reads

〈
ψ̄u(Cγ5)σ2ψ̄T

d

〉
=

∂
V∂J

Z(J)
∣∣∣
J=0

=
1
V

〈〈
∑

i

J

ξ 2
i + |J|2

〉〉
= π

〈〈
ρD(0)

〉〉
, (3.6)

where we have defined the diquark spectral density,

ρD(ξ ) =
1
V ∑

i

δ (ξ −ξi) . (3.7)

4. Eigenvalue Distribution for a Random Configuration

In this article we will take only one random configuration as a representative instead of calcu-
lating the ensemble average over many random configurations. Actually the eigenvalue distribution
for one typical gauge configuration turns out to be quite informative in our case. This simplification
is legitimate because each random configuration equally contributes to a physical quantity in the
strong coupling limit.

The Dirac operator at finite density in the staggered fermion formalism is

D(µ)≡mq δm,n +
1
2 ∑

i

ηi(m)
[
Ui(m)δm+ı̂,n−U†

i (n)δm,n+ı̂

]

+η4(m)
[
eµ U4(m)δm+4̂,n−e−µ U†

4 (n)δm,n+4̂

]
,

(4.1)

whereηµ(n)≡ (−1)n1+n2+···+nµ−1.
The zero-density Dirac operator in the staggered fermion formalism is anti-Hermitean except

for the mass term, so that all the eigenvalues reside on a line whose real part ismq. The chemical
potential breaks anti-Hermiticity and the eigenvalue distribution has a width along the real axis as
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µ goes larger. The broadened width in the real direction has a definite physical meaning. In the
case ofmq 6= 0 the distribution has to be shifted bymq and then the entire eigenvalue distribution
can be placed in the positive quadrant as long asµ is small as compared tomq. It is hence a natural
anticipation that the superfluidity has an onset when the eigenvalue distribution becomes as wide
as it reaches the origin.

µ=0
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Figure 1: Real part of the resolvent,Re(ρχ(λ )), in the complex plane for various values of the chemical
potential.

We can explicitly calculate all the eigenvalues and the spectral density (3.2) to evaluate the
chiral condensate through the Banks-Casher relation in Eq. (3.3). Because of the quartet pattern of
the eigenvalue distribution the imaginary part ofρχ(λ ) is vanishing on the real axis. We show the
real part of the spectral density (resolvent) (3.2) in Fig. 1 for variousµ. It is remarkable that the
spectral density for a random configuration looks such smooth even without taking an ensemble
average. As we have mentioned, the eigenvalues and thus the spectral density with a finitemq can
be deduced simply by a shift along the real axis bymq. Therefore,ρχ(0) appearing in Eq. (3.3) can
be read from Fig.1 by the value at(Reλ , Imλ ) = (−mq,0).

Whenµ = 0 a sharp perpendicular wall stands atRe(λ ) = 0 which is responsible for a non-
vanishing chiral condensate in the limit ofmq → 0 while keepingµ = 0. The wall is smoothened
by the effect ofµ 6= 0 and it is no longer vertically upright at finite density, which leads to an
interesting observation. In fact, it is not hard to conceive from Fig.1 that the chiral condensate
becomes zero in the chiral limit while keeping infinitesimal but nonzeroµ. This is absolutely
consistent with Ref. [1].

We shall next evaluate the diquark condensate using the Banks-Casher relation (3.6). We will
start with the chiral limit (mq = 0) and then go into the finite mass case that we choosemq = 0.2
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here. For convenience we define the integrated diquark spectral number,

nD(ξ ) =
∫ ξ

0
dξ ′ρD(ξ ′) , (4.2)

whose slope atξ = 0 gives the spectral densityρD(ξ = 0) which is proportional to the diquark
condensate. Although the staggered fermion Lagrangian does not involve the Dirac spinor, it is not
difficult to make use of the Nambu-Gor’kov representation to express the diquark condensate by
the diquark spectral density. Since the derivation is only straightforward, we will not reiterate it but
skip detailed arithmetics. To summarize the resultant relations, we can prove that

σ ≡ 1
2
〈χ̄χ〉=

π
2

ρ(0) , ∆≡ 1
2
〈χ iσ2χ〉=

π
4

ρD(0) , (4.3)

where the extra1/2 factor in the diquark relation comes from the square-root prescription necessary
to cancel the doubled Nambu-Gor’kov basis. In the above we have chosen the same normalization
as Ref. [4].
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Figure 2: Left) Histogram ofnD(ξ ) whose slope gives the spectral densityρD(ξ ). Right) Diquark conden-
sate as a function ofµ atmq = 0.

It is intriguing to evaluatenD(ξ ) by the explicit numerical calculation for the eigenvalues in
Fig. 1 from which we can getρD(ξ ). Figure2 shows our results in the chiral limit. In this case
only the diquark condensate is a non-vanishing quantity [1]. We plot the diquark condensate in the
right of Fig.2 without indicating the error bar. We did so because, though the fitting error is small,
the systematic error is large. If we change the working procedure to measure the slope from the
histogram in the left of Fig.2, the resultant diquark condensate would change too. For clarity of
our numerical procedure we explain how we compute the slope ofnD(ξ ) at the origin. We assume
a functional formnD(ξ ) = aξ + bξ 2 within the rangeξ ∈ [0,0.1] and fix a andb to fit the data.
Then,a gives the slope at the origin. Ifa turns negative, that means no spectral density at the origin,
and so the diquark condensate should be zero. In this way we draw the right of Fig.2 which shows
outstanding agreement with the upper-left of Fig. 1 in Ref. [4].

Themq dependence inD(µ)D†(µ) is not such trivial as in the case ofD(µ). Roughly speak-
ing, a finitemq shifts the eigenvalue in the positive real direction so that the eigenvalue distribution
is blocked in the vicinity of the origin as long asµ is small. Forµ above a certain threshold value
the diquark spectral density becomes finite atξ = 0, and the diquark condensation is activated.
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We can repeat the calculation in the massive case as well. Our final results are presented below in
Fig. 3. We note that the onset for the chiral condensate decrease is determined by the front edge of
the sidling wall which corresponds to the edge of the Dirac eigenvalue distribution, which in turn
corresponds to the diquark onset.
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Figure 3: Left) Histogram ofnD(ξ ) in the case ofmq = 0.2. Right) Chiral and diquark condensates as a
function ofµ atmq = 0.2.

It is impressing that the results in the right of Fig.3 is consistent qualitatively with the mean-
field analysis in the strong coupling limit given in the upper-left of Fig. 1 in Ref. [4], though the
direct comparison is not possible for different mass choice.

The technique developed here can be applied to the research on the QCD phase diagram [13]
including the diquark condensate [8] in the future.
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