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We apply Parisi-Wu type Stochastic Quantization Method to a finite temperature lattice field the-
ory of the real-time formula. In the theory, the time axis is extended to a complex contour pro-
posed by Matsumoto et al. and Niemi and Semenoff. The finite temperature property is guaranteed
by (anti-) periodicity of the time contour in the imaginary direction and a part of the time contour
along the real axis describes the real evolution of the system. Taking correlations on the real-time
part, we can directly obtain the relaxation of the system.

We apply numerically this method to a scalar field on the lattice. In the stationary limit of the
stochastic process expectation values of physical quantities converge. Taking field correlation on
the real-time part, relaxation like behavior of the system appears.
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1. Introduction

Describing and understanding the time evolution and relaxation of the system is one of the goal
of theoretical physics, but it is difficult, in general, especially for many-body system. Numerical
simulation of the lattice field theory based on the Monte Carlo method works as a quite powerful
tool to investigate the many-body system. However, usually, the time axis there is converted to the
inverse temperature through Wick rotation and most of the discussions are limited to the stationary
properties such as thermodynamic quantities. Even in the calculation of the transport coefficients
at fixed temperature, some sophisticated analytic continuation is inevitable.

Ordinarily Monte Carlo method is based on the probability distribution e~S, therefore Eu-
clidean time through Wick rotation is indispensable. Recently, Berges and Stamatescu succeed
to make a numerical simulation of the real-time evolution based on a Stochastic Quantization
Method[fl]. They apply Parisi-Wu type Stochastic Quantization Method to the system of the
Schwinger-Keldish closed-time-path formula and investigate time evolution of the field on the
lattice. However, because of the non-equilibrium property of the system, they must specify the
boundary condition which may strongly restrict the evolution of the system.

Describing non-equilibrium evolution of the system is a great challenge of the physics but how
to specify the boundary condition seems to be too much for us. Hence, we focus our attention to
the finite temperature equilibrium system. Even in equilibrium, a real-time correlation of currents
provides us a relaxation of the fluctuation which is related to a transport coefficient through linear
response theory.

A finite temperature field theory with real-time was formulated and established energeti-
cally around 80’s. Takahashi and Umezawa proposed operator formula named Thermo Filed
Dynamics[@]. An equivalent formula in perturbative sense is formulated in path integral with a
complex time contour by Niemi and Semenoff[B]. The aim of this paper is stochastically quantize
the finite temperature system of Niemi-Semenoff type real-time formula.

2. Stochastic Quantization Method

Parisi and Wu proposed a quantization method based on a stochastic process with an additional
time axis so called “fictitious time”t [4,[5]. The chronological evolution of the system along the
fictitious time is subject to a Langevin equation,

do(x, 1) 0%

i T o, T) +n(x1), (2.1)

with St being Euclidean action, x being Euclidean space-time and n(x, T) being a white Gaussian
noise. Statistical properties of n(x, T) are given as,

(n(x,7))ln =0, (2.2)
(NN, 7))y = 8*(x=x)d(T - 1. (2.3)

Taking stationary limit at T — oo, we can obtain equivalent expectation values to ones of the Eu-
clidean path integral formula,

lim (@(x, 1)@(X, 7)) [y = (@O P(x) 1. (2.4)

T—0
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The starting point of the Stochastic Quantization Method is a Euclidean field theory. Our
basic idea is to extent Euclidean time in above x to the Niemi-Semenoff type complex contour
which includes Minkowski time.

3. Finite Temperature Field Theory with Real Time

Niemi and Semenoff proposed a path in-
tegral with a complex contour shown in fig.
1 with B being a inverse temperature. The t
theory is equivalent to Thermo Field Dynam- Im t Ret
ics in perturbative sense[f]. A correlation #
of the fields on the path (OA) corresponds
to a thermal expectation of a real-time green
function, tr{e P (X, t)p(X,t")} and a field C — B
on the path (BC) corresponds to the “tilde N
field” in Thermo Field Dynamics. Putting
(anti-) periodic condition between O and D,
we can obtain Kubo-Martin-Schwinger con-
dition which guarantees thermal equilibrium
state[[]].

In the complex contour in fig. 1, Niemi Figure 1: The time contour on the complex plane
and Semenoff put AB = CD = f/2.
Schwinger-Keldish formula is obtained if we take AB — O[f]. When we extend a time axis to
a complex contour, there exists a restriction that the path must tilt in forward direction[f]. This
restriction comes from semi-definite properties of Hamiltonian and fixes the direction of Wick ro-
tation. Even in the ordinary Minkowski theory, there exists originally a small negative imaginary
part in the time path.

ol

4. Method

We apply Stochastic Quantization Method to the system with complex time contour shown in
fig. 1. The kinetic term in the Langevin equation (2.]) is changed as,

o0&

0Q(te,X, T)
0 is the derivative along complex contour and causes a path dependent phase. The phase makes
Langevin equation complex. Stochastic Quantization Method with complex Langevin equation has
long history and it is also known that sometimes numerical simulations lead to wrong results[p]].
However, Nakazato and Yamanaka have discussed Stochastic Quantization with Minkowski time
and they conclude that, by virtue of a small i€ in Lagrangian which corresponds to Feynman causal-
ity, the propagator obtained in Minkowski Stochastic Quantization becomes the same to the one in
ordinary quantum field theory[I0]. We also expect the phase which comes from the tilt of the
complex time contour make Langevin equation converge and provides us a non-trivial expectation
value.

= [0, P(te, X, T)+---.
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5. Concluding remarks

We are now carrying out numerical simulation of scalar field with complex time path. Though
our simulation is still preliminary stage, obtained results show that even with the Minkowski time
region in the complex path, correlation function seems to converge in T — oo limit. Correlation
functions of the physical quantities on real-time part(OA in fig. 1) show appropriate relaxation-like
behavior. Detailed results will be published elsewhere.
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