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The phase diagrams at high temperature ofSU(N) gauge theories with massive fermions are

calculated by numerically minimizing the one-loop effective potential. We consider fermions in

the Fundamental (F), Adjoint (Adj), Antisymmetric (AS), and Symmetric (S) representations,

for N from 3 to 9, with periodic and antiperiodic boundary conditions applied. For one flavour

of AS/S (Dirac) fermion with periodic boundary conditions the C-breaking phase is favoured

perturbatively for all values of the fermion mass. In the case of one flavour of adjoint Majorana

fermion, and periodic boundary conditons, the deconfined phase is favoured for any fermion

mass. For one or more adjoint Dirac fermion (two or more Majorana fermions) we find partially-

confining phases as well as new phases with unusual properties. Our results forSU(3) andSU(4)

are consistent with our lattice simulations of a related model.
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1. Introduction

Certain QCD-like theories can be useful for studying confinement and chiral symmetry break-
ing. One of these is adjoint QCD [QCD(Adj)] [1, 2] which isSU(N) gauge theory with adjoint
representation fermions1 instead of fundamental. For a theory which approximates adjoint QCD
our lattice results in [3] indicated that the confined phase could be accessed perturbatively2. It was
shown that this result is well supported by perturbation theory in the high temperature regime. In
this paper we show that forSU(N) gauge theories with fermions in various representations varying
the fermion mass gives rise to non-trivial phase structure when considering PBC on fermions.

In our earlier work [3] simulations were performed using an extension to Yang-Mills theory
of an adjoint Polyakov loop term, which is like adding a heavyadjoint quark. Using one-loop per-
turbation theory we consider two new extensions to Yang-Mills theory: 1) multiply wound adjoint
Polyakov loops (center-stabilized Yang-Mills theory), 2)fermions in the adjoint representation with
nonzero mass.

We considered variousN andNf as well as other representations of fermions: fundamental (F),
antisymmetric (AS), and symmetric (S), and refer the readerto [5] for details of all our results.

2. Center-stabilized Yang-Mills theory

Perturbative accessibility of the confined phase for allN is possible for certain types ofZ(N)-
invariant extensions to Yang-Mills theory. In [6] we introduced an extension in terms of powers of
the Polyakov loopP = diag{eiv1,eiv2, ...,eivN},

Vext(P) ≡
1
β

⌊N/2⌋

∑
n=1

an TrF (Pn)TrF(P†n) =
1
β

⌊N/2⌋

∑
n=1

an

N

∑
i, j=1

cos[n(vi −v j)] (2.1)

where⌊N/2⌋ is the integer part ofN/2. This is the minimum number of terms required to obtain
the confined phase for some value of thean parameters.

Including the boson contribution [8] from pure Yang-Mills theory

VCYM(P) = −
2

π2β 4

∞

∑
n=1

1
n4 [TrA(Pn)]+

1
β

⌊N/2⌋

∑
n=1

anTrF(Pn)TrF(P†n). (2.2)

This potential has recently been studied more extensively in [7] and we have therefore adopted
their notation ("an") and nomenclature ("center-stabilized Yang-Mills theory") in this paper. We
minimizedVCYM with respect to the Polaykov loop eigenvaluesvi to determine the phase diagram
for a range of values of thean.

3. One-loop effective potential with massive fermions in rep R

The one-loop effective potential forNf Majorana fermions (Nf ,Dirac = 1
2Nf ) of massm and in

representationR in a background Polyakov loopP is [9]:
1In this paper we further define adjoint QCD with periodic boundary conditions (PBC,+) on fermions rather than the

usual antiperiodic boundary conditions (ABC,-). This results in additional phases and allows for comparison of lattice
results with analytic calculations.

2For a related theory the lattice results in [4] also suggest accessibility of the confined phase aboveTc,gauge.
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Figure 1: Nc = 3 phases of QCD(Adj)
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Figure 2: Nc = 4 phases of QCD(Adj)

V1−loop(P,m) ≡−
1

βV3
lnZ(P,m)

=
1

βV3

[

−Nf lndet
(

−D2
R(P)+m2)+ lndet

(

−D2
ad j(P)

)]

=
m2Nf

π2β 2

∞

∑
n=1

(±1)n

n2 Re[TrR(Pn)]K2(nβm)−
2

π2β 4

∞

∑
n=1

1
n4 TrA(Pn)

(3.1)

where we have(+1)n for PBC and(−1)n for ABC applied to fermions. To obtain the preferred
phases for a range ofmβ we numerically minimizeV1−loop with respect to the eigenvalue anglesvi

of the Polyakov loop.

4. Results

4.1 Phases of adjoint QCD, PBC on fermions ,Nf > 1 Majorana flavour

The phase diagram ofSU(N) gauge theories with adjoint fermions is quite rich when periodic
boundary conditions are applied to at least two Majorana fermion flavours. Figures 1 - 4 show the
observed phases forN = 3−6. In all cases the confined phase is observed. The confined phase is
conventiently defined in terms of theN Polyakov loop eigenvalue anglesvi ,

confined: v = {0,
2π
N

,
4π
N

, ...,
2π(N−1)

N
} N odd

v = {
π
N

,
3π
N

, ...,
(2N−1)π

N
} N even.

(4.1)

The deconfined phases are also observed:

deconfined: v = {0,0, ...,0} and allN−1 nontrivialZ(N) rotations. (4.2)

In SU(3) there are additionalSU(2)×U(1) (or "skewed") phases:

SU(2)×U(1) : v = {0,π,π} andZ(3) rotations. (4.3)
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Figure 3: N = 5 phases of QCD(Adj)
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Figure 4: N = 6 phases of QCD(Adj)

ForSU(4) the new phase is a partially-confinedZ(2)-invariant phase:

SU(2) conf:v = {0,0,π,π} and{
π
2

,
π
2

,
3π
2

,
3π
2
}. (4.4)

In Figures 2 and 4 the use of a shape other than a circle indicates that the vacua occur together only.
For example, in Figure 2 for theSU(2) confined phase the two vacua on the real axis (represented
by squares) only occur together such that TrFP = 0, however, TrFP2 6= 0. The same is true of the
vacua on the imaginary axis (represented by triangles).

WhenN = 5 the new phases are theSU(2)×SU(3) phase, and anSU(2)×SU(2)×U(1)

phase:

SU(2)×SU(3) : v = {0,0,0,π,π} andZ(5) rotations

SU(2)×SU(2)×U(1) : v = {0,−φ ,−φ ,φ ,φ} andZ(5) rotations.
(4.5)

TheSU(2)×SU(2)×U(1) phase is unique in that the Polyakov loop eigenvalues are notconstant
asmβ as varied, but ratherφ decreases asmβ increases causing the Polyakov loop eigenvalues to
be attracted together.

WhenN = 6 the new phases are both partially confined: theSU(2)-confined phase, and an
SU(3)-confined phase:

SU(2) conf:v = {
π
2

,
3π
2

,
π
2

,
3π
2

,
π
2

,
3π
2
},{

5π
6

,
11π

6
,
5π
6

,
11π

6
,
5π
6

,
11π

6
},{

7π
6

,
π
6

,
7π
6

,
π
6

,
7π
6

,
π
6
}

SU(3) conf:v = {0,
2π
3

,
4π
3

,0,
2π
3

,
4π
3
},{

π
3

,π,
5π
3

,
π
3

,π,
5π
3
}.

(4.6)

4.2 Results for Adjoint QCD, PBC on fermions,Nf = 2 Majorana flavours

Figures 5(L), 6(L), 7(L), and 8(L) show the phase diagram of adjoint QCD with PBC on
fermions andNf = 2 Majorana flavours as a function ofmβ for N = 3−6. The black dots indicate
the result of numerical minimization ofV1−loop in eq. (3.1) with respect to the eigenvalue angles
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Figure 5: N = 3: (Left) VADJ(+), Nf = 2 Majorana flavours; (Right)VCYM vs. a1
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Figure 6: N = 4: (Left) VADJ(+), Nf = 2 Majorana flavours; (Right) phase diagram ofVCYM in thea1−a2

plane
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Figure 7: N = 5: (Left) VADJ(+), Nf = 2 Majorana flavours; (Right) phase diagram ofVCYM in thea1−a2
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Figure 8: N = 6: VADJ(+) for (Left) Nf = 2; (Right)Nf = 3 Majorana flavours

vi . The coloured lines result from plugging into eq. (3.1) the known eigenvalue angles from eqs.
(4.1 - 4.6). The coloured line on which the dots lie tells us the preferred phase for a value ofmβ .

In the case ofN = 5, Figure 7(L) shows that theSU(2)×SU(2)×U(1) phase does not have
a corresponding theory curve because the Polyakov loop eigenvalue anglesv = {0,−φ ,−φ ,φ ,φ}
change with withmβ .

As mβ is increased, Figures 5(L), 6(L), 7(L), and 8(L) indicate that the phases in Figures 1
- 4 are traversed in order of increasing|TrFP| (considering only one of the vacua in the case of
the partially confined phases). With each transition the Polyakov loop eigenvalues are increasingly
repelled going from the confined phase, through the new phases, to the deconfined phase.

Another important observation is that the confined phase is less accessible perturbatively asN
increases. ForN = 3, Figure 5(L) indicates that the confined phase is accessible formβ ≤ 1.6. For
N = 6, Figure 8(L) shows that it is only accessible formβ ≤ 0.6. Considering the largeN limit
Figure 9 shows(mβ )crit , the maximum value ofmβ (with uncertainty+0.1) for which the confined
phase is accessible, forN from 2 to 18. It indicates that the range ofmβ for which the confined
phase is accessible shrinks rapidly at first, then levels offfor largeN.

The decrease in the range ofmβ for which the confined phase is perturbatively accessible as
N → ∞ can be partially offset by increasing the number of fermion flavoursNf . Figures 8(L) and
8(R) give the case ofN = 6; asNf is increased from 2 to 3, the range ofmβ for which the confined
phase is accessible increases as well. However, there is a natural limit in that Nf ≤ 5 Majorana
fermion flavours are required to preserve asymptotic freedom.

Figures 5(R), 6(R), and 7(R) show the results of minimizingVCYM of eq. (2.2) with respect to
a1 for N = 3, and with respect toa1 anda2 in the case ofN = 4 and 5. As shown from side-by-
side comparison with Figures 5(L), 6(L), and 7(L), the center-stabilized model always includes the
phases QCD(Adj), as well as additional phases in the case ofN = 4 and 5. But, the additional phases
can always be circumnavigated by choosing an appropriate path through thean space, allowing
traversal of the phases in the same order as they appear in QCD(Adj) for increasingmβ .

5. Conclusions

Extending Yang-Mills theory with adjoint fermions (with PBC) or using the center-stabilzing
potential results in exotic phase structure. The center-stabilized theory and adjoint QCD with
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Figure 9: Range ofmβ for which the confined phase is accessible in QCD(Adj) withNf = 2

Nf ≥ 2 Majorana flavours leads to perturbative access to the confined phase for allN. For adjoint
QCD with at least two Majorana fermion flavours, asN increases the range ofmβ for which the
confined phase is accessible decreases. However, asNf is increased within the limits allowed by
asymptotic freedom, the confined phase becomes accessible for a larger range ofmβ . The
center-stabilized theory contains all the phases of adjoint QCD and these can be traversed in the
an parameter space in the same order as they appear when increasing mβ in adjoint QCD,
avoiding extraneous phases. Considering also the results in [5]: for QCD(AS/S) with PBC on
fermions aC -breaking phase is favoured for allmβ .
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