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1. Introduction

Quantum chromodynamics (QCD) is the theory of strong interactions. Whidsvaemper-
atures the dominant degrees of freedom are hadrons, due to onembshénportant properties
of QCD, asymptotic freedom, at high temperatures it describes a diffehasie of matter called
qguark-gluon plasma (QGP). The phase transition between the hadr@se phmatter and QGP
can be investigated by lattice simulations. The transition at zero chemical pbtewtich repre-
sents the case of equal number of quarks and antiquarks — is of hugednmg® since it is relevant
for the early Universe and also for high energy collisions. The redgiadheophase diagram corre-
sponding to small and moderateis also interesting, since the cooling down of the QGP after a
heavy ion collision occurs in this area.

Simulations at nonvanishing chemical potential are burdened by a sighificatiem: the
fermion determinant here becomes complex, and as a result makes impcdamn@eng impossi-
ble. A possible solution for this issue is to expand observables into a Test@s inu, where the
coefficients can be calculated at vanishing chemical potential. Due to the sgymafithe partition
function describing the system, the first term in these expansions alaaighes. The second term
on the other hand is related to the curvature of the transition line.

The 2+1 flavour QCD transition was found to be an analytic crossovdimdfiead of a first-
order phase transition), which usually results in different transition testyoes for different ob-
servables [4]. Our aim is to determine the curvatdref the phase transition line for different
observables. These include the Polyakov loop, the strange quark neagoeptibility, the chiral
condensate and the chiral susceptibility.

2. Possible scenarios
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Figure 1: Two possible scenarios about the QCD phase diagram arowaduzeTransition temperatures
determined by different observables may converge to (ie&, compare to first lattice indications dg =

4 [2]) or diverge from (right side, first lattice indications Nt = 4 [3]) each other as the chemical potential
is increased. This tendency can also have an effect on theege (and if it exists, the position) of the QCD
critical endpoint.
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As an effect of the crossover character of the transition at gertine critical temperature
determined from the chiral susceptibilityc(xzy) ~ 151 MeV) and that from the strange quark
number susceptibilityTe( xs) =~ 175 MeV) are quite different [4]. This situation can change at finite
chemical potential according to two possible scenarios. The strengthefihg transition could
cause these two values to approach each other, while if the transition resnaigek crossover,
the two transition lines can diverge (see figure 1). The two cases aaeaseq by the sign of the
differencek (Xs) — K(Xgy) Of the curvatures for the two observables. A positive sign (left side)
would indicate that the crossover region shrinks, which might suggest thdical endpoint exists
on the phase diagram. On the other hand a negative sign would causeskever region to
expand, which may result in the abscence of the critical point.

Supposing that there exists a critical endpoint around baryonic cheputattial g ~ 360
MeV, the difference of the curvatures should be arofrd= 0.02 (see definition below). Here
and also in the following undee we mean thgig baryonic chemical potential. There are several
works in the literature in which the value of the curvature was computed [B, &, 9]. In these
Nt = 4 works the curvature was found to be in the intemrat 0.003...0.01. On the other hand,
the Nt = 6 results of [3] indicate that the curvature might become less pronouneedd® the
continuum limit.

3. Thecurvature

Let us parametrize the transition line in the vicinity of the vertigak 0 axis asTc(u) =
Te (1—k - p?/T2). This implies that the curvature can be written as

o dTe(p)
© D) |, G-

We illustrate our first procedure to measure the derivative in questiog tigrguantityys/T?
(see definition in section 6). Since<0xs/T? < 1 stands independently pf, we can defind.(u)
via the relationys/T?(Tc, 1) = 0.5. In the following we use the short notatieh= xs/T?.

The total derivative of the observabig(T, u?) may be written as @ = (d¢/dT) -dT +
(00/d(u?)) -du?. So, since along th&(u) line d&’ = 0 by definition, for the derivative in the
definition of the curvature this reads as

(50
du? ou? aT

This way it is enough to measure these two derivatives at an arbitrary tetape For more
complicated quantities this procedure gives only an approximate value fouthature. In these
cases one should carry out measurements at various temperature$;(finenan be defined as
the inflection point (for e.gxs/T?) or the maximum value (for e.gy) of the observable. This
second procedure — which is clearly more CPU-demanding — is an ongaijegtp Nevertheless,

to calculate the derivativé/d () we need to measure new operators. These are detailed in the
next section.
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4. Technique

Let us consider the partition function in its usual form

7 — /.@Ue’sg(u)(detM)Nf/“ 4.1)

and denote the derivative with respecigy by '. The derivatives of2” are easily calculated to be
(logZ) = (nyq) and(logZ)” = (Xud), Where the light quark number densityy and the light
quark number susceptibility, 4 are the following combinations:

N —1pp/

Nudg = —Tr(M~1M

u,d 4 ( )
N

Xud = niﬁszr (MM =M~ MMM

Using these definitions the second derivative of any (possiplydependent) observable can be
determined as

9%(0)
a“&,d
For observables that do not depend explicitly jory (like the Polyakov loof or xs) the third

term in (4.2) vanishes. Faqr, -dependent observables the derivatiésand ¢ were calculated
numerically, using a purely imaginary chemical potential.

= (OXud) — (O)Xud) + (20'n g+ O") (4.2)

5. Simulation setup

We used a Symanzik improved gauge and stout-link improved staggered rigritaitiice ac-
tion in order to reduce taste violation. The configurations were generatedwexact RHMC
algorithm. We determined the line of constant physics (LCP) using physicsdendor the light
quarksm, 4 as well as for the strange quark. The LCP was fixed by setting the ratit / fx and
mk /my; to their physical values. We used four different lattice spachgs- 4,6,8,10 and aspect
ratiosNs/Nr of 4 and 3. The scale was fixed iy and its unambiguity checked by calculatimg,
fr andrg. For measuring the operators necessary for the above mentionedtiderthe random
noise estimator method was used. The number of random vectors was 8egina8der for the
error coming from the random estimator method and that from the finitenéise sfatistics to be
of the same extent. The details of the simulation setup can be found in [4]]or [10

6. Observables

In order to determine the derivativT,/d(u?) expressed in (3.2), one needs to select some
observableZ. For this role we used the following quantities:
The Polyakov loop is defined as

Nr—1

1
L= N—g ZTr tEL Ua(x,t) (6.1)
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In order to be able to extract continuum limit results, an appropriate refiaatian is necessary.
ForL this meand., = Lexp(V(ro)/2T), whereV (r) is theT = O static potential [4].
The strange susceptibility
T d%logZ
Voapy
needs no renormalization, since it is connected to a conserved current.
The chiral condensate can also be expressed as a derivative @irtiti@p function:

_ T dlogZ
V=9 "om

It can be renormalized by subtracting the additive divergences, andribkiplying by the quark

mass, so that the multiplicative factors also cancel (here the fafitisrused to get a dimensionless

combination):

(6.2)

Xs

(6.3)

_ — _ 1
P = (Y- PY(T=0)-m- (6.4)
T
Finally, the definition of the chiral susceptibility is
T od%logZ
Xow =9 ome (65
and the renormalization is the following:
1
Xoyr = (Xgw — Xgw (T ZO))'mz'ﬁ (6.6)

7. Results

As already mentioned, in our approach we select an arbitrary tempetaatkeulate the cur-
vature of the transition line. In order to increase statistics, we can alsagevereasurements at
different temperatures. This procedure is illustrated on figure 2 fordke of the strange suscep-
tibility and the chiral condensate.

Having obtained the renormalized quantities fgr= 4,6,8 and 10, we are in a position to
carry out the continuum extrapolation. The results shown on figure 8rdyepreliminary; note
that the extrapolated values have quite large statistical errors.

8. Summary

While the curvature values fapy, are smaller than those foi/T? at every lattice spacing,
they become consistent in the— O limit. Our aim in the first place is to determine the difference
k(W) — K (xs/T?), so increasing the statisctics in order to clarify the situation is very important.
Nevertheless we report the continuum resuttep ;) = 0.003440) andk (xs/T2) = 0.001351),
and also for the Polyakov loop and the chiral susceptibiktfl:, ) = —0.009593) andk (Xgyr) =
—0.001834).

As the next step we are looking forward to perform the above descpitte@dure to measure
00 /d(u?) for the whole temperature interval aroufid This way it becomes possible to determine
the critical temperature for the given observables (by locating their infregi@int or maximum
point) at nonvanishing chemical potential. Using this technique and much Eajistics we plan
to give a final answer for the curvature of the QCD transition line.
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Figure 2: The curvature determined using the normalized strangeeptibdity (left side) and the renor-
malized chiral condensate (right side), respectivelyepwhdent measurements at different temperatgres (
values) can be averaged to decrease statistical errorsltREemNr = 8 lattices are shown.
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Figure 3: The curvature of the transition line as a function of theidatspacing squared, for the strange
susceptibility (left side) and the chiral condensate {rigide). As characteristic to the applied action, the
Nr = 4 results are out of the scaling regime, so the linear extasipa is carried out using only the finer
lattices. As it can be seen, larger statistics is neededdardo extract a reliable continuum result.
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