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tend its applicability towards the deconfinement transition. The construction of such a center-
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undergoes a second order confining phase transition in complete analogy with the full theory.
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1. Introduction

In the study of high temperature gauge theory in thermal equilibrium, a particularly useful
approach has turned out to be that of dimensional reduction [1]. There, one describes the system
via a d− 1 dimensional static effective theory built using the fact that, at high temperature, the
non-static field modes decouple quite efficiently from the dynamics of length scales larger than or
equal to the inverse Debye mass.

How efficiently the non-static modes decouple from the dynamics of the long wavelength
modes is dictated by the magnitude of the scale separation between the Debye mass and the first
non-static modes. At extremely high temperatures, where the gauge couplingconstantg is small,
the separation of scales is guaranteed as the scale associated with the non-static modes is∼ 2πT,
whereas the Debye mass∼ gT is suppressed by the gauge coupling. However, it is known that there
exists at least a modest separation of these scales even in the vicinity of the deconfinement transition
[2], and thus the dimensionally reduced theory should give at least a qualitative description of the
full theory all the way down toTc or even below.

The perturbatively constructed dimensionally reduced effective theoryElectrostatic QCD (or
EQCD), an effective theory for the zero Matsubara modes of gauge fields Aµ , has had many suc-
cesses in the high temperature regime, such as the efficient reorganizationof the weak coupling
expansion of the QCD pressure [3]. This reorganization has provideda framework for extending
the expansion to the fullg6 order, where the pressure acquires its first non-perturbative contribu-
tions. In addition to this, there are several numerical simulation results from EQCD, which have
produced results matching those of the full four-dimensional theory evenat surprisingly low tem-
peratures all the way down to∼ 1.5Tc [4].1

However, even with these successes, EQCD cannot accommodate the approach toTc as in
EQCD the dynamics responsible for the phase transition are missing. Being a perturbatively con-
structed effective theory, EQCD describes small fluctuations around one of theNc (in the quarkless
case degenerate) deconfining minima, whereas the qualitative change near Tc is closely related with
the tunnelings of the Polyakov loop between the different deconfining phases. Consequences of this
shortcoming are seen for example in the phase diagram of the effective theory: The phase in EQCD
corresponding to the physical deconfined phase is not the global minimum of the effective theory
and simulations have to be performed in a metastable phase, discarding by hand the contributions
of the global minima of the theory to the partition function [6].

In order for the effective theory to correctly describe the dynamics of the large field fluctua-
tions, it has to accommodate the full symmetry structure of the underlying theory, which in this
case includes the ZN center symmetry of the Yang-Mills theory2. A natural way to construct an
effective theory with the center symmetry is to use some remnant of the temporalWilson line as a
degree of freedom instead of the small fluctuations of the temporal gauge field around a deconfining
minimum. Such a center-symmetric effective theory for SU(3) Yang-Mills theory was proposed in
[7] and further formulated on a lattice in [8]. Subsequently, in order to create a more economical

1The spatial string tension of (in 2+1 flavor QCD) seems to be described very well by EQCD even further, to
temperatures very nearTc [5].

2Even though in the full QCD the quarks break the center symmetry softly preferring the real deconfined minimum,
the metastable minima contribute to the partition function and should be accounted for near the deconfinement transition.
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platform to study the role of the center symmetry, a center-symmetric effectivetheory for SU(2)
Yang-Mills was constructed and studied in [9]. The restriction for the degree of freedom in the
theory to lie on the SU(Nc) manifold makes it impossible to construct a super-renormalizable the-
ory with polynomial interactions3, and thus these theories are formulated using the spatiallycoarse
grainedtemporal Wilson line as the degree of freedom.

The main result from the simulation of the SU(2) case is that upon the inclusion of the center
symmetry, the effective theory accommodates a confining second-order phase transition in the same
(3d-Ising) universality class as the full four-dimensional theory, which happens at an effective
theory coupling consistent with the critical coupling of the full theory.

2. Center-symmetric Lagrangian

The center-symmetric effective theory for hot SU(Nc) Yang-Mills theory is defined by the
action

S =
∫

d3xL (x), (2.1)

L = g−2
3

{1
2

TrF2
i j +Tr

(

DiZ
†DiZ

)

+V(Z )
}

, (2.2)

with Di ≡ ∂i − i[Ai , · ] andFi j ≡ ∂iA j − ∂ jAi − [Ai ,A j ], i, j = 1,2,3. To leading order, the fieldsAi

are the zero Matsubara modes of the four-dimensional theory whereas the field Z is the (gauge
invariantly) coarse grained temporal Wilson line

Z (x) =
T

VBlock

∫

V
d3yU(x,y)Ω(y)U(y,x). (2.3)

Here the integration goes over the (somewhat arbitrary)O(T−3) volume of the block andU(x,y)

is a parallel transport connecting the pointsx andy at constant timeτ = 0, whereasΩ(x) is the
ordinary temporal Wilson line winding around the Euclidean time direction

Ω(x) ≡ P exp

[

i
∫ β

0
dτ A0(τ,x)

]

. (2.4)

In the case of the SU(2), the 2×2 coarse grained temporal Wilson line can be expressed by
using the scalar fieldsΣ andΠa (a = 1,2,3) and Pauli matricesσa

Z =
1
2

{

Σ11+ iΠaσa

}

, (2.5)

and the potentialV(Z ), consisting of all other possible super-renormalizable operators constructed
from the fields in the effective theory respecting the symmetries of the full theory, can be expressed
as

V(Z ) = b1Σ2 +b2Π2
a +c1Σ4 +c2

(

Π2
a

)2
+c3Σ2Π2

a. (2.6)

The parameters of the effective theory are related to those of the full theory by imposing
conditions that at leading order the effective theory reduces to EQCD athigh temperatures and

3A non-renormalizable effective theory of temporal Wilson lines is studiedin [10].
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that a domain wall stretching from one deconfined minimum to another has the correct tension,
resulting in

b1 = −
1
4

r2T2, (2.7)

b2 = −
1
4

r2T2 +0.441841g2T2, (2.8)

c1 = 0.0311994r2 +0.0135415g2, (2.9)

c2 = 0.0311994r2 +0.008443432g2, (2.10)

c3 = 0.0623987r2, (2.11)

g2
3 = g2T, (2.12)

whereg andT are the coupling constant and temperature of the four-dimensional theory, andrT
is anO(T) mass scale associated with the auxiliary scalar field introduced by the coarsegraining.
This quantity, closely related to the cutoff of the effective theory, is not perturbatively matched and
the dynamics of the long wavelength modes should not be affected by its specific value.

3. Non-perturbative phase diagram of the effective theory

Since the effective theory is super-renormalizable, the theory can be formulated on a lattice
and the lattice-continuum relations of the parameters of the Lagrangians canbe computed up to
and includingO(a0) using two-loop lattice perturbation theory, making it possible to simulate the
theory on a lattice at the physicalMS parameters [8, 9]. Using standard Wilson discretization and
denoting lattice quantities with hats, the lattice action corresponding to effectivetheory reads

Sa = SW +SZ +V(Σ̂,Π̂), (3.1)

SW = β ∑
x,i< j

[

1−
1
2

Tr [Ui j ]

]

, (3.2)

SZ = 2

(

4
β

)

∑
x,i

Tr
[

Π̂2− Π̂(x)Ui(x)Π̂(x+ î)U†
i (x)

]

+

(

4
β

)

∑
x,i

(

Σ̂2(x)− Σ̂(x)Σ̂(x+ î)
)

, (3.3)

V =

(

4
β

)3

∑
x

[

b̂1Σ̂2 + b̂2Π̂2
a + ĉ1Σ̂4 + ĉ2

(

Π̂2
a

)2
+ ĉ3Σ̂2Π̂2

a

]

, (3.4)

whereβ is the lattice coupling constant

β =
4

ag2
3

(3.5)

corresponding to a lattice spacinga. The lattice quantities are related to the continuumMS quanti-
ties via

Σ̂ = Σ/g3 +O(β−1), Π̂ = Π/g3 +O(β−1), ĉi = ci +O(β−1), (3.6)
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and

b̂1 = b1/g4
3−

2.38193365
4π

(2c1 +c3)β

+
1

16π2

{

(48c2
1 +12c2

3−12c3) [log1.5β +0.08849]−6.9537c3
}

+O(β−1)), (3.7)

b̂2 = b2/g4
3−

0.7939779
4π

(10c2 +c3 +2)β (3.8)

+
1

16π2

{

(80c2
2 +4c2

3−40c2) [log1.5β +0.08849]−23.17895c2−8.66687

}

+O(β−1).
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Figure 1: A check of the universality class of the transition: The Binder cumulant〈(TrZ )4〉/〈(TrZ )2〉2

is shown for various lattice volumesN3 as a function of the rescaled variable(1/g2−1/g2
c)N

1/ν for r2 = 5
(left) and 10 (right). The pseudocritical couplingg2

c is the value of the coupling, which maximizes the
susceptibility of TrZ , andν = 0.63 as appropriate for a three-dimensional Z(2)-transition. A satisfactory
data collapse is observed for various volumes, and the cumulant value atg2

c is consistent with the 3d-Ising
value 1.604.

The non-perturbative phase diagram at any fixedr closely resembles that of the four-dimensional
SU(2) Yang-Mills theory: There are three phases, the two deconfined phases with〈TrZ 〉 6= 0 which
occur at smallg, and the remnant of the confined phase with〈TrZ 〉 = 0, seen at largeg. The con-
fined and deconfined phases are separated by a second order transition, which belongs to the uni-
versality class of 3d-Ising model (see Fig. 1), the correct universalityclass of the four-dimensional
theory.

The phase diagram in the(r,g) plane is depicted in Fig. 2. AsrT becomes of orderT, the
phase diagram depends only mildly onr, as expected. Remarkably, at large values ofr, the critical
coupling of the effective theory is even consistent with the four-dimensional theory critical coupling
(using one-loop running to convert the critical temperature in lattice units toMS coupling).

4. Conclusions

It has been seen that in the case of SU(2) Yang-Mills theory, the accommodation of the ZN
center symmetry in the dimensionally reduced effective theory improves the applicability of the
effective theory near the deconfinement transition significantly. Lattice simulations show, that upon
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Figure 2: The phase diagram of the effective theory on the(r2,1/g2) plane. The solid blue data points are
from numerical simulations from [9], and the open red one hasbeen obtained from the known location of
the critical point ofλφ4 theory. The curve connecting the points has been obtained from a polynomial fit
and has been included in the diagram to guide the eye. The horizontal line is the critical coupling of the full
four-dimensional theory.

respecting the symmetries of the full theory, the phase diagram of the effective theory becomes
qualitatively similar to that of the four-dimensional theory having two deconfined phases at high
temperature and a confined phase at low temperature separated by a second order transition in
3d-Ising universality class. In addition to this, quantitatively the phase transition takes place at
effective coupling consistent with the critical coupling of the four-dimensional theory.

The success of implementing the center symmetry to the SU(2) case encourages further stud-
ies. The accuracy of the effective theory near the deconfining transition should be quantified for ex-
ample by studying the behavior of various screening masses and by measuring the non-perturbative
domain wall profile. In addition to this, the effective theory can be extendedto give predictions of
physical situations which are otherwise difficult to study. These include for example the possibility
to study the poorly known region of the phase diagram of QCD with heavy quarks by including
center symmetry breaking operators to the Lagrangian, and extensions to largeN, a work which is
already started in [11].
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