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1. Introduction

In recent years, anisotropic lattice actions have seen increasing use in simulations. The 3 + 1
anisotropic lattice, which has a temporal lattice spacing at that is much less than the spatial lattice
spacing as, is obviously very useful in studies of QCD at non-zero temperature, where it allows
the temperature to be varied precisely at fixed lattice spacing. At zero temperature, the utility of
the anisotropic lattices in studies of the glueball spectrum of pure Yang-Mills is well-known [1, 2].
The fine temporal lattice spacing helps to resolve higher-lying states whose two-point functions
quickly disappear into noise, while the relative coarseness of the spatial lattice spacing minimises
the computational overhead.

The ultimate goal of the Hadron Spectrum Collaboration is a precise determination of the
low-lying spectrum of QCD. The low energy states of interest are not, however, restricted to just
the ground state resonances in each irreducible representation of the lattice symmetry group, but
include a number of higher-lying excitations. The use of anisotropic lattices with fine temporal
lattice spacings will be essential for the resolution of these states. It is also crucial that the action
used should have a well-defined single timeslice transfer operator, to avoid unphysical oscillations
in the temporal fall-off of correlation functions. This requirement is potentially at odds with the
Symanzik improvement program, which aims to eliminate lattice artifacts in a systematic way by
adding irrelevant operators to the lattice action. However, on an anisotropic lattice, cutoff effects
which depend on at are highly suppressed and the dominant lattice artifacts depend on the spatial
lattice spacing only. Therefore, a Symanzik-type improvement program can be implemented which
removes these dominant cutoff effects, without sacrificing positivity of the action.

The advantages associated with anisotropy come at a price. Anisotropic lattices break hyper-
cubic symmetry, and accordingly the quark and gauge actions contain additional parameters which
must be tuned so that the anisotropy (or aspect ratio) as/at measured using different physical probes
takes a fixed target value. This tuning can be performed non-perturbatively [3]. However, in princi-
ple, non-perturbative tuning runs may be required for each new set of simulation parameters. In this
proceedings, we describe the tuning of the anisotropic action parameters in one-loop perturbation
theory. These lattice perturbative results are valid in the high β regime. However, the ultimate goal
of this work is to combine the results of lattice perturbation theory with the non-perturbative data
to obtain functional forms for the action parameters which hold over much of parameter space.

2. Actions

The anisotropic quark action used in our simulations is

Squark = ata3
s ∑

x
ψ̄ (x)

{
m0 + γt∇t −

at

2
4t +νs ∑

k

(
γk∇k−

as

2
4k

)
+

1
2

[
ctas ∑

k
σtkFtk + csas ∑

k<l
σklFkl

]}
ψ (x) , (2.1)

where the covariant derivatives and clover-leaf discretisation of the field strength tensor are built
from link variables which have been stout-smeared [4] in the spatial directions. As noted above,
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it is important that the temporal links be left unsmeared. Furthermore, the action includes tadpole
improvement factors for the spatial links, although, for an action constructed from smeared links,
these are close to unity.

In a numerical simulation all lengths are expressed in lattice units, and the quark action de-
pends on a bare anisotropy parameter which we denote ξ0. This bare parameter can receive radiative
corrections. However, it is possible to choose the coefficient νs, multiplying the kinetic term, such
that the aspect ratio measured from the quark dispersion relation takes a predefined target value. At
tree level and in the chiral limit, setting νs = 1 fixes the measured aspect ratio to the bare anisotropy.
The ‘clover’ coefficients ct and cs are tuned such that on-shell quantities are free of O (at ,as) cutoff
effects. For massless quarks, their tree-level values are ct = 1

2

(
νs + 1

ξ0

)
, cs = νs.

The gauge action incorporates Symanzik and tadpole improvement, and can be written

Sgauge = −β

{
ξ0

[
4
3 ∑

i
Pti−

1
12 ∑

i
Rti

]
+

1
ξ0

[
5
3 ∑

i< j
Pi j−

1
12 ∑

i< j
(Ri j +R ji)

]}
. (2.2)

Ri j denotes a 1× 2 rectangle, two links long in the j direction, summed over all lattice sites. The
dominant discretisation errors of this action appear at O

(
a2

t ,a
4
s ,αsa2

s
)
. Crucially, the lagrangian

is just one link wide in the temporal direction, which guarantees a well-defined single-timeslice
lattice transfer operator.

3. Tuning the quark action parameters

In lattice perturbative studies, for the sake of simplicity, one often ignores the dependence of
the action parameters on the bare quark mass. In the Fermilab formalism [5], on the other hand,
the full quark-mass dependence of the action parameters is determined, yielding an action which
can be used in both the chiral and heavy-quark regimes. In our simulations, m0as is not always
guaranteed to be very small, and we have adopted a Fermilab-type approach in this study. Even at
the tree-level, the parameters of the quark action receive non-trivial mass-dependent corrections.
The tree-level mass dependence of the kinetic coefficient νs can be determined by expanding the
free-quark energy in powers of the spatial momentum, and demanding that the quark rest mass and
kinetic mass be equal for a given aspect ratio:

atE (~p) = atMrest +
1

2atMkin

|as~p|2

ξ 2
0

+ · · · . (3.1)

This implies that

ν
(0)
s =

√√√√1
4

ξ 2
0 sinh2

(
atM

(0)
rest

)
+ exp

(
atM

(0)
rest

) sinh
(

atM
(0)
rest

)
atM

(0)
rest

− ξ0

2
sinh

(
atM

(0)
rest

)
, (3.2)

where atM
(0)
rest = log(1+atm0). Expanding this expression, one finds that the leading order cor-

rection to ν
(0)
s is linear in the bare mass. The tree-level chromoelectric and chromomagnetic co-

efficients can be determined by requiring that, at low momenta, scattering amplitudes match their
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Figure 1: ν
(0)
s as a function of the tree-level quark rest mass given in spatial lattice units.

continuum counterparts. They are

c(0)
t =

atm0 (2+atm0)

4ν
(0)
s ξ0 [log(1+atm0)]

2
− ν

(0)
s

ξ0atm0 (2+atm0)
,

c(0)
s = ν

(0)
s . (3.3)

At tree level, our quark action is essentially a reparametrisation of the actions used in Refs. [5,
6], and accordingly Eq. 3.2 and Eq. 3.3 are in agreement with the results of those papers. Fig. 1
plots ν

(0)
s versus the tree-level rest mass for a number of bare anisotropy values. Note the quark

mass dependence of ν
(0)
s even in the isotropic limit.

To go beyond tree level, we compute the quark energy and scattering amplitudes in perturba-
tion theory and apply the same tuning criteria. Our calculation of the leading order correction to νs

therefore amounts to a determination of the quark self-energy in one-loop perturbation theory.

4. Gauge anisotropy

The anisotropy parameter for the gauge action used in this study has previously been deter-
mined to one-loop order in pure Yang-Mills in Ref. [7]. In that study, twisted boundary condi-
tions [8] were used as an infrared regulator for the gluons. The anisotropy was determined by
demanding that one of the stable states in the twisted world, the so-called A meson, satisfy a rel-
ativistic dispersion relation. Determining the anisotropy, therefore amounts to a calculation of the
one-loop gluon self-energy. We have repeated that calculation and extended it to include quark-loop
effects.
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5. Methodology

Lattice perturbative calculations are notoriously complicated, even at the one-loop level. In
our case, although only a moderate number of Feynman diagrams arise, the vertex functions which
appear in these diagrams are extremely complicated due to smearing of the link variables in the
quark action and Symanzik improvement of the gauge action. For such calculations, the best ap-
proach is to automate the derivation of vertex functions and the evaluation of the final momentum
integrals as much as possible [8, 9, 10].

To evaluate the vertex functions, we employed a number of independent methods. In one
approach, we used the suite of Python code described in Ref. [10] to expand the actions to the
required order in the coupling. We have written a parser which converts the resulting data file into
a method of a corresponding C++ vertex class. As a cross-check, a completely separate suite of
C++ code has been developed which evaluates the momentum space vertex functions for a given set
of four-momenta. Using this automated approach, we can evaluate vertex functions for an arbitrary
level of link smearing. In fact, we have checked that it is possible to evaluate a four-gluon vertex
function for the quark action with one hundred iterations of the stout-link smearing algorithm in
just a few seconds.

Spin trace evaluations are completely automated, and the results presented here have been ob-
tained using the Vegas integration routine [11]. Where derivatives of the self-energy with respect to
external momentum are required, automatic differentiation can be applied directly to the integrand
being passed to Vegas. However, the resulting sharply peaked function can prove difficult to inte-
grate. In that case, more precise results may be obtained by evaluating the self-energy at different
values of the external momentum and estimating the derivative numerically [12].

All calculations are performed in a Lorentz-covariant gauge and, where practicable, we repeat
calculations in both Feynman and Landau gauge to verify the gauge-invariance of our results.

6. Results

A plot of the one-loop correction to νs as a function of the quark rest mass for a typical
anisotropy value is shown in Fig. 2. The data presented here are coefficients of g2. Two different
levels of smearing are shown. The stout link smearing parameters of nρ = 2 and ρ = 0.14 were
found to simultaneously minimise the additive quark mass renormalisation and maximise the spa-
tial plaquette in one-loop perturbation theory [3]. For this choice of smearing parameters, the plot
shows that tadpole improvement has little effect on νs. In this study, as in our simulations, we
define the tadpole factor to be the fourth root of the expectation value of the plaquette.

Regarding corrections to the gauge anisotropy parameter, there are a couple of points which
are important to note. First, the pure gauge contribution to the anisotropy and the contribution
from sea quarks are additive. That is to say, the correction for full QCD is simply the sum of the
correction coming from pure Yang-Mills and the quark-loop contribution. Second, it is obvious that
the magnitude of the correction coming from quark loops is proportional to N f , so that it increases
with an increasing number of flavours. It is also important to note that, at one-loop order, the sea-
quark contribution to the gauge anisotropy is independent of the choice of gauge action. Therefore,
the quark-loop corrections presented here hold for any choice of anisotropic gauge action.
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Figure 2: One-loop correction to νs as a function of quark mass. T.I. denotes tadpole improvement, while
the hollow symbols denote results obtained before tadpole improvement.
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Figure 3: The quark-loop contribution to η plotted as a function of the tree-level quark rest mass for different
levels of smearing. As described in the text, η is defined by ξg/ξ0 = 1+g2η , where ξg denotes the anisotropy
measured from the gluonic dispersion relation.
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Following Ref. [7], we define η to be the one-loop correction to the anisotropy divided by the
bare anisotropy value appearing in the gauge action. As a check on our methods, we calculated
the pure gauge contribution to η as described in that reference and found agreement with the
results given there. The contribution of a single sea-quark flavour to this quantity for a fixed bare
anisotropy but a varying sea-quark mass is shown in Fig. 3. As expected, this contribution goes
to zero in the heavy quark limit, but becomes significant at light quark masses. At sufficiently
light quark masses the contribution to η from three degenerate quark flavours can match the purely
gluonic contribution in magnitude [12].

7. Conclusion and outlook

Anisotropic lattice actions must be tuned to guarantee the restoration of Euclidean invariance
in the continuum limit. We have described this tuning in one-loop perturbation theory. To re-
main as close to simulation as possible, the full quark mass dependence has been included in this
calculation. Moreover, we have developed a suite of software capable of handling complicated
actions involving an arbitrary level of link smearing. One-loop calculations of the quark action
improvement coefficients cs and ct using this machinery are currently in progress.

Future work will obviously include a comparison with non-perturbative results. It will also be
useful to know how the addition of an adjoint term to the gauge action, as outlined in Ref. [13],
affects the tuning of the gauge anisotropy.
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